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The artificial vtscosity (Q) method of von Neumann and Richtmyer is a tremendously 
useful numerical technique for following shocks wherever and whenever they appear in the 
flow. We show that it must be used with some caution, however, as serious Q-induced errors 
(on the order of 100%) can occur in some strong shock calculations. We investigate three 
types of Q errors: 1. Excess Q heating, of which there are two types: (a) excess wall heating on 
shock formation and (b) shockless Q heating; 2. Q errors when shocks are propagated over a 
nonuniform mesh; and 3. Q errors in propagating shocks in spherical geometry. As a basis of 
comparison, we use as our standard the Lagrangian formulation with Q = Cip/*(~~)~. This 
standard Q is compared with Nob’s (Q & H) shock-following method, which employs an 
artificial heat flux (H) in addition to Q, and with the (non-Q) piecewise-parabolic method 
(PPM) of Colella and Woodward. Both the (Q & H) method and PPM (particularly when 
used with an adaptive shock-tracking mesh) give superior results for our test problems. In 
spherical geometry, Schulz’s and Whalen’s tensor Q formulations of the hydrodynamic 
equations prove to be more accurate than the standard Q formulation, and when Schulz’s for- 
mulation is combmed with Nob’s (Q & H) method, superior results are achieved. 

1. INTRODUCTION 

The artificial viscosity ((2) method of von Neumann and Richtmyer [l] is a 
tremendously useful numerical technique for folIowing shocks wherever and 
whenever they appear in the flow. However, as we shall see, it must be used with 
some caution, as serious Q-induced errors can occur in some calculations of strong 
shocks. 

We investigate three types of Q errors: 

1. Excess Q heating, of which there are two types: (a) excess wall heating on 
shock formation and (b) shockless Q heating; 

2. Q errors when shocks are propagated over a nonuniform mesh; and 
3. Q errors in propagating shocks in spherical geometry. 

We use, as a basis of comparison, the Lagrangian formulation of the 
hydrodynamic equations given in Ref. 1, with the standard Q = C~pZ2(~,)2. In Sec- 

*This work was performed under the auspices of the United States Department of Energy by the 
Lawrence Livermore National Laboratory under Contract W-7405-ENG-48. 
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CALCULATIONS OF STRONG SHOCKS 79 

tion 2, the Lagrangian differential equations with Q (in plane (6 = l), ~yli~d~~a~ 
(6 = 2), and spherical (6 = 3) geometry) are given, and we include an artifical heat 
flux H= h&d2 ju,I E, used in Nob’s (Q & H) shock-following method C21.l For our 
comparisons, three Q’s are defined: QL, QL( ) 2) , and Qn. QL (the standard Q above) 
and Qr(v) (the original Q of [l]) are referred to as L,agrangian (L) formulations, 
in that they spread shocks over a fixed number of (Lagrange) mesh intervals ( N 3) 
independent of their actual physical size, while Qn is referred to as an Eulerian, or 
fixed-length formulation of Q, which spreads shocks over a fixed physical 
(Eulerian) distance (1:3dx,,,). Only QL(u) depends on the geometry 6 (see [3, 
p. 319]), and as we show later, this dependence on 6 introduces the most shockless 
Q heating error of any Q and the most Q error for shocks in spherical geometry. 
Thus, QL(v) is not a preferred choice. We also define two Rs, H, and H,, where 
H, is used in conjuncton with QL, and H, is used with Qr in the (Q & H) metho 

In Section 3, we give the difference equations and formulations of the Q’s an 
ITS. The nominal difference formulation of QL is QL = 2p(du)‘, in which the I of the 
standard Q is taken to be equal to the Lagrange interval (Ax), and the coeffci 
C’i = 2. This is the benchmark Q used in our comparisons. We refer to this use of 
as the standard calculation. 

There are two excess Q heating errors: (1) excess wall (or piston) heati 
Q, which occurs on shock formation (e.g., at a rigid wall where a gas is br 
rest and a shock is propagated away, or at the sudden startup of a piston) 
Q heating for shockless compressions (i.e., when u, < 0 and no shock is 

In Section 4, we investigate the wall heating Q error in test problem 1. This is an 
infinite-stength, constant-velocity shock in a perfect (y = 3) gas. A cold gas 
(so = P” = 0), initially moving with velocity u” = -1, is brought to rest by a rigid 
wall located at the origin. A shock is generated at the rigid wall and moves to the 
right with constant states (u’ = 0, p + = 4, E’ = 0.5, etc.) and a constant shock 
speed (S = f). 

The excess wall heating error occurs in the first few zones near the wall and 
shows up as overheating, or what is equivalent, a dip in the density (Fig. 1). (That 
is, since the post-shock pressure Pt is nearly constant, then, for P+ = (y - l)p+~+, 
a peak in E+ results in a dip in p*.) This error goes with the size of the 
ficients, Ci and Ci (Fig. 2), and is also seen to depend on the Q for 
(Fig. 3). That is, in Fig. 3, we see that the error is larger for QE than for 
the same size coefficients Cg and C, ). By numerical arguments (Section 4.2), and 
from Fig. 4, we see that this Q error is inevitable and is, in fact, built into the exact 
solution of the differential equations (2.1) with Q given by (2.2). Indeed, we argue 
(Section 4.2) that such a wall heating error will occur for any shock-smearing 
method (in the absence of heat conduction), whether a viscosity Q occurs ex 
in the method or not. Now, because the (Q & W) shock-following metho 

1 The idea behmd the (Q & H) shock-following method is to approximate nature more closely by 
smearing shock discontinmties using artificial heat conduction as well as artificial viscosity. In particular, 
hot spots caused by using fJ alone are eliminated. or at least reduced by using both Q and N. 
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include an (artificial) heat-conduction term H, then, as in nature, the excess wall 
heating error is eliminated. This is seen by comparing Fig. 5 (no heat conduction) 
with Fig. 6 using the same Q as in Fig. 5, but with the heat flux H # 0, and indeed 
the wall heating error has been eliminated. 

In Section 5, we investigate the shockless Q heating error using a class of test 
problems (with exact solutions for all geometries 6) called uniform collapse [S]. 
Here, the fluid is shockless, even though it is everywhere compressing. In the Q 
method, an energy error, As, occurs for QL, QE, and for QJz)). In particular, in 
spherical geometry (6 = 3), the QL(u) energy error, As,(v), is nine times as large as 
the QL energy error, AC, (i.e., da,(u) = d2A&, = WAS,). This fact strongly rules in 
favor of our use of QL = 2p(A~)~ as the standard Lagrange formulation of Q, rather 
than the original Qr(v) suggested in Ref. 1. 

In Section 6, we investigate the second type of Q error by introducing a non- 
uniform mesh (Ax,, 1 = RAx,, where R is a constant) into problem 1 (see Fig. 7). 
As our standard Q, we use QL = 2~(Au)~ and compare the QL errors for R = 1.05, 
1.15, and 1.25 in Figs. 8, 9, and 10. Because the type 2 errors approach lOO%, they 
can be a serious concern. A remedy is to use Qn, the fixed-length Q (Fig. 11). Here 
we see that Qn completely eliminates this nonuniform mesh error, but that the wall 
heating error is very large. By using both QE and H, in the (QE & HE) method 
(Fig. 12), we see that all error is eliminated. That is, the (Qn & HE) shock-following 
method offers a 100% fix for both the type 1 and type 2 errors. 

Unfortunately, using QE spreads shocks over a fixed physical distance of 
= 3Ax,,, > which is unacceptable in those regions of the problem where a smaller 
mesh interval occurs. Now this nonuniform mesh error clearly depends on the Q 
formulation, and we can ask, “Is it possible to find a Lagrange (L) formulation of 
Q (i.e., where I= Ax) for which this type of error is also zero?” The answer appears 
to be that this is unlikely, because comparisons of other Q,‘s [6] (see Fig. 13) show 
a comparable error for all of the QL’s tested. 

Section 7 contains a theoretical explanation for the errors associated with letting 
I = Ax in QL. This implies that I depends on x [i.e., 1= Z(x)] in the differential for- 
mulation of QL, which, in turn, leads to a fictitious frame-of-reference velocity in 
the differential equations. This fictitious frame of reference is then shown to account 
for the observed errors. As a result, this error (due to letting I= I(x)) can be expec- 
ted in all Lagrangian formulations. The fact that this error is already an error in the 
solution of the differential equations is established numerically in Fig. 14. 

As we note in Fig. 13, the nonuniform mesh error increases with Cg and C,, and 
thus we would like to minimize Cs and C,. In particular, the (QL & HL) method 
permits us to use considerably smaller QL coefficients, while at the same time 
eliminating the type 1 wall heating error. This can be seen in Figs. 15 and 16, where 
indeed the wall heating error is eliminated altogether, and we note that using H, 
with Qr results in smoother shocks. Having smoother shocks permits us to reduce 
the Qr constants. In Fig. 16, when we take Cg = 1 and C, = 0, we see that this 
choice minimizes the type 2 error. The (QL & HL) method thus is an acceptable 
procedure if the unequal zoning is not too severe. 
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In Section 8, we investigate the spherical-geometry Q errors using Nob’s 
spherical-shock test problem [2] (Fig. 17) which for 6 = 3 is just a generalization 
of test problem 1. This type 3 error is considerably more complicated than the 
previous Q errors, in that it depends both on the Q formulation [e.g., L vs 
Q(v)], and also as to whether Q is treated as a scalar viscosity as in Ref. 1 or as a 
tensor viscosity, as given by Schulz [S] or Whalen [9], That the errors are truly 
enormous is seen in Fig. 18, where the error for the standard QL formulation is 
nearly 600% near the origin and nearly 1000% for Q,(v)-the original de~~it~o~ 
of Q (when generalized to spherical geometry) given in Ref. 1. In Fig. 19, we see just 
how serious this error can be and how slowly the solution converges to the e 
solution (i.e., p + = 64). Indeed, even for 800 mesh points in the unit sp 
(K= SOO), there is still a considerable error near the origin 

The explanation is given in Fig. 20, where we show that the error results from t 
finite shock thickness, which prevents the Q method from determining the correct 
preshock density. (That is, the shock spreading picks p- < p,,,, = 16). In Fig. 21 
we argue numerically (as in Section 4) that this type 3 error is already in the ~~~e~ 
solution of the differential equations with Q (and is thus not related to any particular 

rence method). Indeed, the error is due entirely to the finite shock thickness. 
conclude that sharper shocks give smaller Q errors. This is shown in Fig. 22, 

where the QL and (QL & HL) methods are compared. The (QL Bz NL) solution gives 
both smoother and more accurate results, and indeed, Fig. 22b shows the internal 

y using (Q & N) to be essentially correct (i.e., E+ = f). 
comparing various Q,‘s and (QL & HL) in Fig. 23, it is clear that sharper 

shocks produce less error. The (non-Q) PPM of Colella and Woodward [ 
produces even sharper shocks (Fig. 24) than any of the Q methods (i.e., PP 
spreads shocks over only one or two mesh intervals), and thus, for 
unit-sphere test problem, PPM is superior to all he scalar (S) QL o 
methods shown in Fig. 23. The small error in P is further reduced 
adaptive mesh technique to capture the shock. The results (Fig. 24) show that using 
400 zones (with an adaptive mesh) is equivalent to a 12OO-zone (essentially con- 
verged) normal PPM problem. 

Section 9 contains Schulz’s tensor Q formulation (T) of the hydrodynamic 
equations. along with his artificial viscosity, QL(S), definition [8]. The calc~Iatio 
using this tensor formulation (Fig. 25) show a significant improvement over t 
standard scalar (S) solutions (e.g., Fig. 23). However, only a slight improve 
obtained using Schulz’s QL(S) over the standard QL, and we conclude that it is the 
tensor equations (T) that are important, and not so much which QL formulation is 
used, In Fig. 26, the (T) formulations for QL (T) and (QL & H,) (T) are 
Figure 26b shows that the energy error is almost zero using the (QL 
method. Again, sharper shocks reduce this type 3 error, and nearly exact 
achieved using a very small QL constant (Ci = $) and by employing the 
(T) method (QL = ($)(AzI)’ and H, = lop IAul As, Figs. 27a and b). In 
various QL*s, (QL & HJ methods, and (non-Q) PPM 
results [in the standard loo-zone (K= 100) problem are 
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formulation of the (QL & HL) method with a small QL coefficient Ci. The best 
overall results are obtained with the (non-Q) PPM using an adaptive-mesh shock- 
following procedure, where, however, one should note that 400 mesh points are 
used in the shock-capturing procedure vs 100 mesh points for the other methods. 
The point to be emphasized here is that adaptive-mesh procedures can define 
shocks very accurately and are suggested for all shock-following methods. 

Section 10 contains Whalen’s [9] tensor formulation of the hydrodynamic 
equations and his definition Q,” of a tensor Q. His results, shown in Figs. 29 and 30, 
are remarkably accurate, even for a mesh as coarse as K= 25 (Fig. 30). It is not yet 
clear whether his tensor formulation gives equally good results for more com- 
plicated shock problems, and we await further word on this from Whalen. Clearly, 
though, his formulation, (10.6) and (10.7), produces the most accurate (Q only) 
results for our test problem and needs to be investigated further. 

In Section 11, we conclude that the Q errors of types 1, 2, and 3 are not due to 
the difference-method solution, and thus our difference equations do not contribute 
to the Q errors that we investigate. Rather, (2 errors are intrinsic to the artificial 
viscosity (Q) shock-following method itself, and are thus already contained in the 
exact solution to the differential equations with (2. Consequently, improvements 
must be sought to modify the Q method (e.g., by using a tensor formulation and 
using both Q and H to follow shocks) or to minimize the physical shock thickness, 
as in the non-Q PPM, or more generally by using an adaptive-mesh shock- 
capturing procedure. In all cases, narrow shocks produce the least error. 

2. LAGRANGIAN FLUID EQUATIONS 
WITH ARTIFTCIAL VISCOSITY Q AND HEAT FLUX H 

Von Neumann and Richtmeyer [ 1 ] considered their artificial viscosity Q to be a 
scalar quantity, and we take their formulation of the Lagrangian fluid equations as 
our standard. Also, the new (Q & H) shock-following method of Noh [2] (which 
uses an artificial heat-flux H in addition to the artificial-viscosity Q to follow 
shocks) is included in the formulation. 

2.1. Differential Equations 

The independent Lagrange variables are r and t, where r is taken as the initial 
position of the Eulerian (physical) coordinate (i.e., R(r, 0) = r); and U, p, E, P, Q, 
and H are the velocity, density, internal energy, pressure, artificial viscosity [l], 
and artificial heat flux [2], respectively. A more useful independent variable 
is the mass, m, where, by the conservation of mass, we can write 
dm = SpR’-’ dR = Sp”r6-’ dr = p” dr’, and the differential equations for plane 
(6 = l), cylindrical (6 = 2) and spherical (6 = 3) geometries are as follows (with the 
usual notation aflat = f,, afp = fr, af,am = f,, etc.): 
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u,= -6R6-1(P+ Q), momentum 

Rt=u position 

u = (l/p) = (R6), mass 

E, = -(P + Q)u, + 6(R6- ‘H), energy 

p = %A E) equation of state 

and where Q and H are to be specified. 
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(2.1) 

2.2. Definitions of Q and H 

We include linear terms in Q and H [Z, 51. These are used in some of the Q error 
comparisons to produce smoother shock profiles, but otherwise do not affect the Q 
errors that we consider. The subscripts L and E refer to whether the space 
derivatives are in terms of the Lagrangian independent variable, Y, or in terms of 
the Eulerian (physical) space coordinate, R: 

Standard Lagrange Q: 

Standard Lagrange H: 

Eulerian (fixed-length) Q: 

Qdc;, C,) = 

i 

c;pP(u,)‘- C,pCslldR, 

0, 

Eulerian (fixed-length) H: 

Hdh;, h,) = 
%pl* lu,xl &ix + h,pC&,, 
o 
> 

Original Lagrange Q [ 11: 

if u, < 0, 
if m,>O; 

(2.2) 

if QL#O, 
if QL=O; (2.3) 

if u,<O, 
if uR>O; 

12.4) 

if QE #Q, 
if QE=O; (2.5) 

if D, < 0, 
if v,>O; 

(2.6) 

where C,, C,, ho, and h, are dimensionless constants; I is a constant with the 
dimensions of length and is related to the shock width (~31); C, is the local speed 
of sound; and in (2.6), p” = p(v, o) is the initial density. 
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We note that the Lagrangian and Eulerian formulations, Qr, and Qn, and H, 
and H, are related by the Jacobian J= R,, where for the quadratic terms (i.e., 
setting C1 = 0 and h, = 0) 

QL=RSQ, and H,= R;H,, 

or, in general, 

QdC;, Cl) = QdWoR,)‘~ C, &,I 

and 

Equation (2.6) is the original von Neumann-Richtmyer Q formulation expressed 
in terms of the specific volume, v = (l/p), and is the only Q here to depend on the 
geometry (6) (see also [3, p. 3191). In particular, both (2.2) (with C, =0) and (2.6) 
are identical for plane geometry (6 = 1). That is, from (2.1) and 6 = 1, 
v,=R = R,, = U, = (l/p”)u, from which it follows that (2.6) reduces to (2.2). This 
also p%ts out that (2.6) is indeed a Lagrange (L) formulation of Q. 

In the Lagrange formulation (L), the standard use is to take I= dv, which spreads 
shocks over a fixed number (N 3) of mesh intervals (AR) (regardless of their size). 
In the Eulerian (fixed-length) formulation (E), shocks are spread over a fixed 
(physical) length (-3Z), again independent of mesh size. Hence in the Eulerian for- 
mulation, one must take 1~ AR,,, 3 Armax. That is, to define a shock numerically, 
it must be spread over at least two or three mesh intervals (AR), and thus for Qn, 
we should take I N AR,,,; but it generally suffices to let I N Armax = AR:,,, and we 
do this for our problems. 

The usage, when H is included, is to take QL and H, together and H, with Qn. 
These are referred to as the (Q & H) shock-following method. 

3. DIFFERENCE EQUATIONS 

Here we essentially .follow the staggered mesh (in time and space) difference for- 
mulation of the fluid equations given by von Neumann-Richtmyer [ 11; however, 
we deviate slightly from their formulation to ensure that total energy is conserved.* 
These equations have proven to be very accurate over the years, and indeed, we 
conclude that they are very accurate for our study of strong shock errors. 

2A final pressure Pn+ ’ = P(@+‘, &“+I ) is available; however, it is not compted. This is done so that 
the total energy defined (in the sense of Trigger and Trulio [4]) as .a”+ ’ = (4)~~ + 312~” + i/’ + E” + i is con- 
served. This is ensured if the final pressure is Indeed given by (3.5), and a”+’ by (3.6). (In Ref. 1, 
P+‘+P of (3.6) is taken to be P”+1+P”+2Q”+1iz, i.e., only the latest Q is used m the energy 
equation; and in Ref. 4, this choice is shown not to conserve total energy.) 
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3.1. Difference Equations for Plane, Cylinder, and Sphere (6 = 1,2, 3) 

Let B” = P” + Qn-Ij2, (AP); = P;, 1,2 - c- 1,2, Am,, 1,2 = pi+ 1,2(rz+ 1 - rf). ;8nd 
Am, = $(Am, + 1,‘2 + Am,_ ,,?), etc. Then (for constant At), 

‘k 
n + l/2 = g - lc? 

k (3.1) 

R;+‘=R;:+A~u;:+‘/~, (3.2) 

g+l 
kf l/2 = 13.3) 

and the energy E is evaluated in two passes (see footnote 2) (with all subscr! 
k + f,; 

& -~+l=En~pn(Un+l~“n)+ (3.4) 

pl=p(pll+l,il+l)) 
{3.5) 

c”+l=E,.-ipn+~P”)(C”+l-Cn) I SAtAC(R”-‘H)“+(R~-‘~J”+‘I, (3.6) 

Am 2 

where p + 1 = H[f + 12, Up2 + l/Z, gn + 1,. 

3.2. Difference Definitions of Q and H 

We restrict our definitions to the quadratic terms (i.e., set C, = h, = 0), since t 
linear terms follow similarly. Let 

(Ar)k+lj?=rk+l-rky (AR) k+1,2=Rkt1 -Rk, (Au) k+1,12=“k+1-Uk~ 

and define 

(Au) n + l/2 
(4 n t l/2 - ki l/2 if (Au);: iii < 0, 

k+ l/2 - 0 if (Au);~~(,$>O, (3.7 1 

then the difference formulations are given by 

which is obtained by taking I= Au in (2.2) and likewise in (2.3) to obtain the 

Fixed-length Q: (Q,);T$= (CO/)’ (3.10 
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the fixed-length H. 
In (3.10) and (3.11), 2 is taken to be (a constant) l=(AR~+1,2)max, and shocks 

will then be spread over a length ( N 31). The original von Neumann-Richtmyer [ 11 
QL(v) of (2.6) is given by 

if Au/At < 0, otherwise 0. Or, in divergence form, (i.e., (2.6) can also be expressed as 
Qr(u) = Ci~(lR,)~[u, + (6 - l)u/R12); taking I= Ar, 

[QL(u)];;:$=C;p;=:~ Au+(‘-~~~~] 
n + l/2 

, 
k + l/2 

if 
Au 
dt < 0, otherwise 0. (3.13) 

We also note that, of the Q’s and H’s, only Qr(v) depends on the geometry 6. 
We will abbreviate (3.8) to Qr(C$ = Cip(d~)~ or, more generally, 

QdC& C,) = %W4* - C,pC,(Au) (3.14) 

in the test calculations. Likewise for H,(hi, h,), etc. The nominal value for Cg is 
taken to be 2; so that our standard calculations will be denoted by 

Q&I = %Wd2. (3.15) 

4. EXCESS Q HEATING ERRORS 

4.1. The Wall Heating Error Test Problem 

Test problem 1 is that of a constant-state, constant-velocity shock of infinite 
strength (i.e., the preshock pressure P- = P” = 0). The shock is generated in a per- 
fect (y = 4) gas by bringing the cold (so= 0) gas to rest at a rigid wall. This is just 
the familiar constant-velocity, piston-driven shock, but in a frame of reference 
where the piston (here a rigid wall at x = 0) is at rest. The particular initial con- 
ditons chosen are u” = -1, p” = 1, so = 0, and thus P” = (y - 1) p”&’ = 0. The post- 
shock solution is u+ = 0, p + = 4, E+ = 4, and P+ = $ (see Fig. 17b, 6 = 1). In Fig. 1, 
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I I I I 
0.2 0.4 0.6 0.8 

Rat10 

L-L 
10 1.2 1 

Distance X 

FIG. 1. The standard calculation, where QL = 2p(d~)~. The shaded area is the error m density due to 
the type 1 wall heating error. That is. P+ = (2/3)p+c+, and for thts problem, P L is correct; therefore. the 
densrty error m p+ is inversely related to the error in E+. In other words, a too-large value of t+ tmphes 
that p + nnplies that p + is too small. 

4 

3 

Q 

c 
5 
cl 

2 

1 

Distance X 

FIG. 2. When we compare curve 1, QL(l, f) = p(du)” - fpC,(du), and curve 2, Q,(4, j) = 4p(du)’ -- 
fpC,(du), with the exact solution, we see that the wall heating Q error increases with the magmtude of 
the QL constants Ci and C,. 
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0 02 0.4 0.6 0.8 1.0 12 1.4 

Distance X 

FE. 3. The wall heatmg error (shaded regions) is larger for QE than for QL with the same size coef- 
ficients Ci and C1. Thus, this error also depends on the Q formulation to some extent. 

p + is plotted for our standard calculation using QL(2) = 2p(du)*. The wall heating 
error (the shaded area) occurs typically in the first three zones next to the wall (or 
piston). 

Figure 2 shows the dependence of the wall heating error on the magnitude of Ci 
and C,. Here, QL(l, 4) is compared with Q,(4, 3) (i.e., Ci --+ (2C,)*, and C1 -+ 2C,) 
and the exact solution. Clearly, the dpp’ error increases with 15’; and C,. Con- 
sequently, the smaller the coefficient C’i (and C,) the better,3 and as we shall see 
later, all of the Q errors that we investigate increase with Cg (and C,). 

Figure 3 is a comparison of & with & for QL and QE (with Ci = 1 and C1 = 5 
for both Q’s). The error dp,+ = PA,,, - pg =4--p,’ is seen to be considerably 
greater than the error Apt. This shows that the wall heating error depends to some 
extent on the Q formulation; however, it cannot be eliminated by some new 
definition of Q, since (as we shall show below) all shock-smearing methods, 
inevitably, have some wall heating error. 

4.2. Theoretical Discussion 

We want to demonstrate that the wall heating (2 error is unavoidable and is 
already an error in the solution of the differential equations with Q. The proof is 
numerical in that we seek convergence using mesh refinement. We consider QL of 
(2.2) as typical. We want to hold 1 fixed in (2.2) and seek convergence to the exact 
solution by letting dr + 0. We can do this most simply by noting first that the effect 

3 In particular, a noisier shock results from the use of a smaller C,Z (and C,), but this noise does not 
seem. in practice, to result in any numerical error. Thus, a noisier shock is to be preferred (even though 
a smooth shock 1s esthetically more appealing). We note later that one of the main advantages of the 
(Q & H) shock-following method IS that shocks are much smoother when a heat flux H is used in 
addition to Q, and thus one can use even smaller constants Ci and C,. 
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on Q of decreasing dr (while holding I constant) is simply equivalent to increasing 
C, and C1 in (3.8). For example, letting Ar 4 Ar/2 (and letting At -+ At/2-whit 
maintains stability in the difference equations) is equivalent to just doubling the 
constants C, and C,(i.e., letting Co --+ 2C0 and C, --+ 2C,). Second, in the rernai~~~~ 
equations (3.1)-(3.?), R; simply scales. That is, for Ar -+ Ar/2 and At + At/2 then 
R;(Ar/2, At/21 = iR;(Ar, At). Let us prove this. We take 

2 = A tjdr (4.1) 

to be a constant, and from (2,2) and (3.8) we define a more general difference for- 
mulation of QL (which reduces to (3.8) for I = Ar); namely, 

from which it follows that 

Q,(ArlN, Co, Cl, 1) = Q,(Ar, NCo, NC,, 0. 14.3) 

That is, holding 1 fixed (and equal to Ar in (4.2)) and letting Ar + Ar/N is simply 
equivalent to letting Co -+ NC, and C, -+ NC, in (3.8). To show the scaling of 
(3.1) to (3.8), we note that 

R;+‘(Ar,At)=kAr+At f ui+“‘=Ar 
2=0 L 

k+3.~z&+1/? = ArR;+‘(l, ,I), (4.4 1 

which completes the proof. 
Thus, for example, if we let Ar + Ar/2 (and since j. is constant, then At + At/2 ), 

we find from (4.4) that 

R;(Ar/2, At/2)= (Ar/2) RE(1, 1) = (l/2) Rz(dr, At), 14.5) 

as noted above, and from (4.2), 

.(A$, Co, Cl, 0 = 4?dAr, 2Co, 2Cl, 0, 14.6) 

which for I= AT is simply equal to QJ(2C,)‘, 2C,] in. the notation of (3.8). From 
(4.5) and (4.6) (i.e., letting Ar -+ Ar/2), we can compute 

p;, ,,,(Ar/% At/Z Co, Cl, 4 = ~;+,,.~lAr? At, 2Co, 2C,, 0. (Lb.7 ) 

and the refined mesh results can then be plotted by using (4.5) and (4.7). T 
we find the left side of (4.7) by simply letting Ci + (2C,)’ and C, -+ 2C, in (3.8) 
and plot these results (which will be in terms of dr and At) using (4.5). 

This provides us with another interpretation of Fig. 2; calculating (using (3.8)) 
with QL(4, 3) (i.e., Ci = 4 and C, = 3) is identical to using (4.2) with I = 0.01. CG = 1, 
and C, =O.33 and to a mesh refinement of dv/2=0.005. That is, from (4.2) 

.005, 1, 4, 0.01)=p(0.01)2 ~Au/O.OO5~“-~pC,(O.Q1) /Au/O.O05j =4p /Auj’- 
~ jdul, which is just Q(4, 3) in our usual notation for (3.8). Also, if curve 2 of 

Fig. 2 is plotted letting Rg --f (t)R; (i.e., a plot of (pi, (t)R;)), it then represents a 
mesh refinement of curve 1 (holding I = 0.01 fixe ). This is done in Fig. 4, and we 
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I I I 
0.2 0.4 0.6 

L 
0.8 0 1.1 

Distance X 

FIG. 4. For thus calculation we compare Ax=O.Ol with Ax= 0.005 and evaluate R;(Ax/2, Ar/2) as 
tR;(Ax, At). That these two curves have the same wall heating error proves (as argued in Section 4.2) 
that the wall heating error is really an error in the exact solution of the hydrodynamic equations (2.1) 
with Q. That is, the curve labeled Ax = 0.005 is equivalent to a mesh refinement of 2 (where Ax + Ax/2 
and At --f dt/2) of the curve labeled Ax = 0.01, and it is clear that the solutions are essentially converged. 
This also gives the correct interpretation of the results of Fig. 2. 

see that the difference solution is essentially unchanged with respect to the wall 
heating error.4 

We conclude, then, that wall heating is inevitable for our difference solution, 
since it already occurs in the exact solution of the differential equations (2.1) with Q 
given by (2.2). (The same conclusions hold for any Q formulation using similar 
arguments, or indeed for any shock-smearing method, as observed by Colella and 

4 The overshooting in density is also reduced for Ar = 0.005 (i.e., letting Ar --t Ar/2); indeed, this 
overshooting error would vanish as Ar -0. However, the wall heating error would remain. Thus, the 
wall heating error is indeed part of the solution of the differential equations with Q and depends on the 
size of the length, f-here, I= 0.01. 
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FIG. 5. QL=+(du)* 
but do not eliminate it. 

1.0 0.2 0.4 0.6 0 8 1 0 1 2 1 4 
Distance X 

- 4pC, Au. These small QL constants Co and C, reduce the wall heating error. 

Woodward [7]. Their more general result follows from total-energy considerations, 
which show that, in shock smearing, too much work is done when a shock starts 
up, or as here, when a shock is formed by bringing the gas to rest. Thus, wall 
heating is inherent in all such shock-smearing procedures.) 

In real fluids, heat conduction is present, and excess wall heating cannot occur 
(since any hot spot would be quickly dissipated). This is the basis of Nob’s (Q & I-T) 
method ((2.1) and (2.3)), which approximates nature more closely by using an 
artificial heat flux H (in conjunction with the usual artificial viscosity p) to smear 

I I I I I I I 

Q 3 

$ 
6 
n 

0.0 0.2 0.4 0.6 0.8 
!!I-- 
1.0 1.2 

-I 

1 
! 
1.1 

FIG. 6. Q,(f, 4) = +p( Au)‘- 4pC,(Au), and H,(O, 2) = $pC,Ae. This IS the same Q used ir, Fig. 5, but 
now the artificial heat flux H is included m the energy equation, and the wall heating error has been 
eliminated. We also note that the shock solution is smoother using H (in conjunction with Q). 
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out shock discontinuities. In Fig. 5, one should compare Q,(Ci, C,) = Q,($ 3) with 
Fig. 6, where Q,($, $), and the heat flux Hr(O, i) = ($)pC, de is used. As expected, 
the wall heating error is zero. We also note that the (QL & HJ solution is con- 
siderably smoother. Indeed, this is one of the chief advantages of the (Q & H) 
method; namely, it permits the use of much smaller Q constants Ci and C1 (which, 
in general, reduces Q errors) and still maintains a smooth (or smoother) shock 
profile. 

5. SHOCKLESS Q HEATING ERRORS 

This is the situation where a compression wave exists (and thus u,< 0 and 
Q # 0), yet the exact solution is shockless. For this analysis, we consider the useful 
uniform collapse problem (see [IS, p. 601) in which a flow is everywhere undergo- 
ing a compression, but no shock develops. We consider a unit “sphere” (0 < r < 1) 
(for planar, cylindrical, and spherical geometries; i.e., for 6 = 1, 2, or 3) and to sim- 
plify the analysis (of the energy errors due to Q) we take the pressure to be just a 
function of density: P= P(p). 

The initial values are u(r, 0) = -r, p = p”, E = so, and P” = P(p”). The boundary 
conditions are ~(0, t) = 0 and ~(1, t) = -1. The exact solution is that the fluid 
simply coasts with its initial velocity (u” = -r) until all points uniformly collapse 
onto the origin R = 0, at time t = 1. It is easy to verify that the exact solution is 
given by 

u(r, t) = -r, R = r(l - t) and u = (l/p) = (1 - qb( l/PO). (5.1) 

Thus, p = p(t), P = P(p) = P(f), and since E, = -Pv, = d/p’P(t)( 1 - t)‘-‘, then also 
E = s(t), and no shocks are present. We now show that Q = Q(t) # 0, and thus Q 
will modify the exact solution. From (5.1), we let r = (1 - t), from which p = p”z -‘, 
and we calculate QL, Qr, and QL(v), 

QL = (CoZ)2p(u,)2 = (CoZ)2poz-6, (5.2) 

(which is not set to zero, since it passes the test U, = -1 ~0). Also, 
uR = u,/R, = --z ~’ < 0, and thus QE # 0 and 

Likewise, 
QE = (CoZ)2p(u,)2 = (CoZ)2po~-(b+2). (5.3) 

r 28-2 

Qdv) = (COP’~~P x 
0 

(u,)2=b2(C0z)2po~-6, (5.4) 

since v, = -(8/p”)“bP ‘) < 0. 
In particular, we note that 

Qdu) = d2Q,, 

thus QL d QL(u). Also, 

QL = T~QE G QE (asz<l); 

(5.5) 

(5.6) 
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Consequently, QL will produce the least error. This Q error occurs only in the 
energy equation, since Q = Q(t), and thus, in the momentum equation 
examine this Q error in energy, let AC = S(E, + PO,) dt = -l Qv, dt. Then, 

de,= -[Q LV, dt = -6(C(# log,(z) > 0 (as z < 1 j, (5.7, 

As,(v) = - [ QL(v) u, dt = -63(COl)z log,(-c) > 8. (5.9) 

Now, as in (5.5) and (5.6), we find 

A&,(v) = 6* de, and AS, < AE,. 

and indeed QL produces the least uniform collapse Q error.’ 

iS.lO) 

Now, as r --+ 0, the above errors AE -+ co; and consequently, this shockless 
heating error can, under some circumstances, be serious indeed. From (5.10), we see 
that As, > de,, and this helps explain why the wall heating error for QE was larger 
than for QL, with the same C, and C, in Fig. 3. (This comparison is appropriate, 
since the first zone of problem 1 has precisely the same initial condition as for the 
problem of uniform collapse.) A more serious matter is the error As,(z:), which, for 
spherical geometries (6 = 3) is nearly an order of magnitude greater than the error 
AE~. In 1956, because of arguments similar to these, Noh [S, pi 581 suggested that 
QL of (2.2) be taken as the standard Q formulation for all geomerties 6 = 1, 2, or 3. 
We make the suggestion again (and for more reinforcement see Figs. 18 and i9). 
since Q,(vj still seems to be in common use. 

6. Q ERRORS FOR A NONUNIFQRM MESH 

The second type of Q error occurs when shocks are propagated over a mesh with 
unequal intervals. For our test problem 2, we again consider test problem 1, but 
now we introduce a nonuniform mesh with 

Ax k+,=RAxx., (6.1 j 

where R is a constant: R > 1. We investigate the cases Is = 1.05, R = 1.15, and 
R = 1.25. To show the errors for both decreasing and increasing mesh intervals, we 
let the mesh decrease for the first half of our test problem (i.e., let R + 
j&l)), and then we let the mesh increase (i.e., use (6.1) j for the second half (Fig. ‘7 1. 
In Fig. 8, R = 1.05, and the density is plotted for our standard QL = 2p(dw)‘. The 
total error is shaded, and again we see the familiar wall heating error in the first 
several zones. The new error: Ap: = P: - p,L,,, = ,o+ - 4 is too large (i.e., bpz 2 0 j 

’ Several QL formulations have been proposed 16, S] for which the shockless Q energy error vanishes 
(i.e., de = 0), but, unfortunately, they do not otherwise represent a general fix to the remaming Q errors 
m shock tracking that we consider here. 
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Ax 2. = Ax2, = 1 

ilxk+, = R-’ Axk "k+l 

O<k<ZO 21 Gk940 “- = -, 
I. 

0 Xl X2X3 30 'k 'k+l I 

Mesh ratio R Z 1 
0 

FIG. 7. The unequal-zoned, infimte-shock test problem. The initial and boundary conditions are the 
same as in test problem 1, but here the initial zonmg vanes geometrically with Ax, + r = RAx, (for con- 
stant R > 1). The mesh interval Ax, decreases (dxk+ 1 = R-‘Axk) for the first half of the mesh 
(0 &k < 20) then Axk Increases (dxk + , = Rdx,) for the second half. The problems are normalized (for 
any ratio R) by taking Axlo = Ax,, = 1.0. The exact solution, of course, is the same as in problem 1 and 
1s shown for y = 4. That is, p + = 4, and the shock speed S = f. 
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Q3 
z 
C 
; 
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I r I I 

Type #l ermr 

I I 
10 20 30 40 

Ax;,~ = 2.65 Mesh Index k 

Mesh ratm R = 1.05 

FIG. 8. Here R = 1.05, and this is the standard calculation using the benchmark QL(2, 0) = 2p(Au)‘. 
This type 2 error, LIP+ = p+ -4, is positive for the first half of the mesh (OG/CC 20), where the mesh 
interval decreases (i.e., R-’ < 1) and is negative (i.e., Ap + < 0) for the second half (21~ k < 40), where 
the mesh interval increases (R > I). The type 1 wall heating error is still present in the first few zones 
next the rigid wall on the left; we note that here, Ax,,, =2.65 (compared with Ax,,, = 1.0 in test 
problem l), and hence, this wall heating error is more serious than it may appear. 
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Ax$ = 16.37 Mesh Index k 
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FIG. 9. Standard calculation using Q1(2, 0) = 2p(du)*, with R = 1.25. Here we note that 
AX 112 - - 16.37; thus both the type 1 and type 2 errors are very large. 

for the first half of the problem, where the mesh decreases, and too small (A,@ < 0) 
for the second half, where the mesh interval increases. 

In Fig. 9, R= 1.15, and in Fig. 10, R = 1.25. The wall heating (type 1) error is 
almost the same in each problem (in the sense that it is still just over the first 
several zones), but here the first few zones are larger, with larger values of R, and 
thus the error becomes more serious as R increases. The new (type 2) nonuniform 
mesh error also grows with R and becomes very serious f 2: 100 % ) for R = 1.15. 

6 

1 I I I I I I I 
0 5 10 15 20 25 30 35 ( 

3.8 

1 .oo 

Ar$ = 86.7 Mesh index k 

Mesh ratio R = 1.25 

FIG. 10. Standard QL(2, 0) = 2p(h)*. R= 1.25, and the type 2 error is nearly 100%. Here 
4x,/Z = 86.7, and the type 1 error is also enormous. 



Mesh Index k 

%+1 = R-‘A+ ;\x 2,, = Ax2, = 1 A$+, = FiAxk 

(0 G k G 20) (21 G k < 40) 

Mesh rat10 R = 1.05 

FIG. 11. Here R = 1.05, and the Eulerian (fixed-length) Qe is used, which spreads shocks over a fixed 
physical distance: Qe(6, $) = 6p(du/~lx)~ - $pC,(du/dx), and the type 2 error vanishes (i.e., LIP,’ = 
pg - 4 = 0). However, the wall heatmg (type 1) error is now very large using Qn, due to the large con- 
stants Gel (and C, 1) that are required to spread the shock over approxrmately three of the largest mesh 
intervals. (That is, for R = 1.05, I = Ax,,, = Ax,,, = 2.65; and we take C, Y 0.9 and C, N 0.3. As a com- 
parison, see Fig. 3, where for Qn, with LX= 1, we used C, = 1 and C, =0.33.) 

'0 10 20 30 40 

Mesh Index k 

"k+l = RAxk Axk+l = R-’ Axk 
(0 C k < 20) (21 Q k < 40) 

Mesh ratm R = 1.05 

FIG. 12. Here we compare the Eulerian (fixed-length) Q with the (Qr & HE) method and the exact 
solution. Here. Qe(6,j) = 6p(du/d.~)‘-~pC,(du/dx) (see Fig. ll), and we use Qr(6.4) and H,(O, 6) 
where H,(O, 0.6) = 6pC,ds. Now, both the type 1 wall heating error and the nonuniform mesh type 2 
error are eliminated. However, there is too much shock spreading using QE for this to be a practical 
solution to minimizing these errors. 
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(C;=SandC,=O8) 

ONoh Q,=C,Zp lAul* + C,& ILul 
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FIG. 13. Nonuniform mesh Ax, + 1 = Rdx, of Fig. 7, comparing various Q formulations [ 1, 5. b] and 
their type 2 error, dp + = p + ~ 4. Here, only the Eulerian formulation QE gives dp; = 0 (i.e., using a 
fixed-length QE, the type 2 error vamshes). We note that all Lagrange formulations Q, (i.e.. where 
I= Ax-), produce Apz # 0 (i.e., a type 2 nonuniform mesh Q error occurs). We see that this error grows 
with the magnitude of Ci and also with (R- 1); thus, Ap,t 2 Ca(R- 1). 

This is unfortunate, as it is not uncommon to use R = 2 in practice, and thus 
R = 1.25 might well be considered a modest zoning change. 

The good news is shown in Fig. 11, where R = 1.05 and the Eulerian, fixed length 
QE of (2.4) and (3.9) eliminates the nonuniform mesh error completely. The bad 
news is that very large QE constants are necessary (i.e., for Ax,,, = d.~,‘~ = 2.65, 
then (CoZ)2 = (Co LIx,,,)~ = 6 (for Co ‘v 0.9) and C, AX,,, = 4/5 (for Co z 0.31. This 
is seen to spread the shock over a large number of the smaller zones, and, in this 
regard, the use of QE is not satisfactory. Also, the use of QE generates a very large 
type 1 (wall heating error) at the wall [see the discussion of (5.10)]. 

In Fig. 12, the (Qn & HE) method is tested for R = 1.05, which results in both the 
type 1 and the type 2 errors going to zero. Thus, in principal, we have a complete 
remedy by using the fixed-length (E) formulation for both Q and H. Wowever, as 
mentioned above, this is not generally a satisfactory solution because of the exessive 
spreading of shocks by the use of QE. 
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In Fig. 13, the results of several Lagrangian Q,‘s (i.e., where Z=dx) all give 
essentially the same error (where the larger errors correspond to the use of larger 
constants Ci and C,), and we see that only QE eliminates the nonuniform mesh 
error completely. In particular, we note that the nonuniform mesh error goes 
roughly as 

Ap,’ N C;(R - 1). (6.2) 

That is, this error increases with the QL constant CO (see also Figs. 15 and 16 in 
Section 7) and with the fractional change in mesh width (R - 1). Also, the term 
(R - 1) accounts for the change in sign of the error for R > 1 or R < 1. We also note 
that White’s [6] Lagrangian QL (which was designed, in part, to eliminate the 
uniform collapse error of Section 5) here fares no better (or worse) than the other 
Lagrangian Qr formulations. This leads us to conclude that the uniform collapse 
error is independent of the type 2 (nonuniform mesh) error. 

7. THEORETICAL DISCUSSION 

In the standard difference formulations of QL, the length I in (2.2) is taken to be 
I k+1/2=AXk+1/2, which gives (Zu,)k+ 1,2 = (du)k + r,* in (3.7). Now, when an unequal 
mesh interval is used, setting 1 equal to Ax,, 1,2 (which is no longer a constant) 
implies that I is a function of x. That is, in the differential formulation (2.2) of QL, 
Z = Z(x). We wish to determine Z(x), where Ax, + 1,2 is given by (6.1), or what is 
equivalent, 

Ax ki 112 = Rk Ax1,2. (7.1) 

After a certain amount of algebra, we find that Z(x) is given by 

l(x)=2[(R- 1)x+ Ax,,,]/(R+ 1). (7.2) 

Let us verify that, indeed, 1, + 1,2 = Axk+ 1,2. Note that (7.1) implies 

(7.3) 

and we substitute this into (7.2). Collecting terms and using (7.1), we have 

= Rk Ax,,, = Ax,, l/z, 
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as required. Thus, the differential formulation of Qt, is given by 

Ql. = c;P4x)2(ux)2 - C,P4X)(%)~ 

where Z(x) is given by (7.2). 

if U, < 0, (7.4) 

One consequence of using (7.4) instead of (2.2) in the differential equations (2.1) 
is that steady traveling shocks are no longer solutions. To see this, we note that t 
shock width (which is proportional to I) will now be proportional to I!(X) and 
means that the shock shape changes with space and thus with time. This might still 
be an acceptable Q representation of shocks, if only the proper shock-jump con- 
ditions held, but our numerical experiments show, unfortunately, that this is not the 
case. 

Let us examine more closely the error introduced by I = E(x). We suppose that 
is given by (7.4), and for simplicity, we take Q to be linear in U, (i.e., Ci = 0 an 
PC, = p°Ce = a constant). Then, Q is given by 

Q = -ClpoC;Z(x)u,. (7.5) 

We want to show that (7.5) (with R # 1 in (7.2)) introduces a fundamental error in 
the differential equations. 

We examine the momentum equation, U, = -(f/p”)P,- (l/p”)Q,, and from 
(7.5) we write 

ut= -wP”)p.x+ ClC~~~,x+ C(C,q7u,l 1,. (7.6) 

From (7.2), we have 1, = 2(R - l)/(R + l), and thus (7.6) can be written (letting 
c5=2C’f + (R+ 1)) as 

u,-C,(R-l)C,u,=~P,+C,C~Zu,,. 
P 

(7.71 

We interpret the left-hand side of (7.7) as arising from a fictitious frame-of- 
reference velocity J? given by 

k= u + C,(R - l)c,. (7.8) 

We deduce this by the following argument. In general, time derivatives are given by 
f=.L+b-mx; where X= X(x, t) =x + j kdt is the Eulerian coordinate of a 
general time-dependent frame of reference. For instance, if k= U, then f = f,, and 
X(X, t) = x + SU dt is just the Lagrange reference frame. If J? = 0, then f = f$ -+ uf,, 
and X(x, t) = X, which is the Eulerian frame of reference. Thus, from (7.7), za - ?== 
-C,(R- l)C;, and it follows that kis given by (7.8). This is just the behavior we 
observed in our numerical experiments (see (6.2)). That is, from (7.1), R < 1 gives a 
decreasing interval, and (7.8) implies that %< U, or the frame-of-reference velocity 
is too slow, which (since the mass of a zone is constant) gives p+ too large. 
Likewise, for R > 1, then k> U, and p + is too low (see Figs. 8,9, and 10). 

In addition to this error in the momentum equation, a more serious error enters 
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the energy equation. To see this, let us revisit the uniform collapse problem of Sec- 
tion 5 and again take Q to be given by (7.5). The exact solution in plane geometry 
(6 = 1) for the uniform collapse problem, where the initial conditions are 
U(X, 0) = --x and P = P(p), is again found by assuming p = p(t), and thus P = P(t). 
Doing this, we check by direct substitution into (7.7), that the solution is given by 

24(x, t)= -x-C1(R- l)@,t. (7.9) 

Then, from X= x + 1 u dt, 

x=x(l-1)-(1/2)C1(R-1)C’,t*, (7.10) 

and from (2.1), u = X, = (l/p’)X, = (l/p’)(l - t); or, since v = l/p, 

p=pO/(l -t). (7.11) 

Thus, as required, p = p(t) and P = P(t). Indeed, (7.9) is the exact solution, with Q 
given by (7.5). We can now compute the Q energy error, As, where 

de = j (E, + Pvl) dt = -j @I~ dt = 1 C,p°C,oI(x) u,vI dt = C1 C,“I(x)t. 

Now, Z(X) is given by (7.2), and thus 

A&= +2C,C,o{ [R- 1)x-t AxI12]/(R+ l)>t. (7.12) 

Equation (7.9) shows that the momentum error goes as C,(R- l)t, while (7.12) 
shows that the energy error is more serious, as it depends on x as well as t, and goes 
as C1(R - 1)xt. 

There is still the question of how closely the difference solution agrees with our 
analytical results. For the uniform collapse problem, at least, the agreement is exact. 
We mean by this that the solution to the difference equations (3.1)-(3.6) over the 
nonuniform mesh: xk = [(l - Rk) + (1 - R)] Ax,!,, with QL given by (7.5) and Z(X) 
given by (7.2) (which, for the difference equations, is the same as using QL = 
-C,p’C,O Au), is precisely given by (7.9) to (7.11). To show this, we let 
U$+ “* = u[&, (U + 1) At], p;= ;,2 = p[(xI, + xk+ ,)/2, (n + 1) At], etc. Then, fl-Om 

(7.9) and (7.3), 

u;+l’*= -x,-C,(R- 1) C&z+;) At 

l-Rk 
= - Ax,,, 

1-R 
- C,(R - 1) C,(n + +) At, (7.13) 

and similar substitutions in (7.11) give p;: i,*, etc. It is easy to verify that (7.13) etc. 
exactly satisfies (3.1) to (3.6). 

That the difference solution (7.13) is precisely the exact solution (7.9) is no doubt 
a function of the simplicity of this uniform collapse test problem, but it does confirm 
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our analysis that the source of error arises from letting I= Ax in the Lagrangian QL 
difference formulation. Also, it is easy to verify that if QE of (3.9) is used in tbe 
uniform collapse test problem, then (as in our experiments) the difference solution is 
also the exact solution, without Q, and is thus independent of the mesh interval. 
Consequently, our theory is in exact agreement with our numerical results-at least 
for this simple uniform collapse problem. 

For the general case of a nonuniform mesh (i.e., test problem 2), we argue by 
numerical experiment that the source of difficulty indeed lies in allowing I = Ax in 
the difference approximation of the Lagrangian QL formulation, which, in turn, 
implies that I= Z(x) in the differential equation formulation of QL. That is, we want 
to show that the numerically observed nonuniform mesh error is simply due to the 
error in the solution of the differential equations when QL is given by (7.4). We do 
this by using the QL of (7.4) and 1= Z(x) of (7.2) in Eqs. (2.1) and solving test 
problem 1 (which is just test problem 2 with equal mesh intervals). This leads to the 
difference equations (3.1)-(3.6) with (Q,‘J,++1,2 of (7.4) given by 

-C1Pk+l~2(Cs)ki1/2 ‘tx)g 
i 

(7.14) 

where now (for equal mesh intervals: Axk+ 1,2 = Ax& [Z(x) Au/Ax] is given 

=‘J-{W- l)(k+i)+ ll/(Rf U)[IA~l~+w (7.15) 
kf l/2 

We want to show, then, that both equal and unequal zoning lead to essentially 
the same numerical solution. This numerical solution, in turn (we assume), con- 
verges to the exact solution of the differential equations (2.1) with Q given by (7.4), 
and l(x) given by (7.2). In particular, in Fig. 14, we use equal mesh intervals (i.e., 
Ax k+1,2- Ax,,,) and take R= 1.05 in (7.15). 

This choice of R corresponds to an increasing mesh interval; and, just as in the 
second half of test problem 2 (with R= 1.05, Fig. 8), the density is seen to be too 
low. More than that, the density in Fig. 14 is too low by exactly the same amount 
as in Fig. 8, which shows that this QL error is independent of the mesh interval 
used, and we conclude that we essentially have convergence to the exact solution6 

This establishes that it is the Lagrange formulation Qr, where I is taken to be 
mesh interval Ax, that causes this Q error. Thus all QL formulations will 
presumably be equally in error by a similar argument, while only the axed-length 
QE results are correct (Fig. 13). 

6 In Fig. 14, the results are smoother than in Fig. 8 due to the presence of a linear term in Q,. In par- 
ticular, in Fig. 14, we used QL(C’& C,) = QL(l, 4) versus QL(2, 0) = 2p(~Iu)~ in Fig. 8. Of course, the wall 
heating Q error in Fig. 14 remains, since it is a Q error of type 1 and occurs for all Qs, as discussed in 
Section 4.2. 
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The “effective” mesh ratio is R=1.05 Mesh index k 

FIG. 14. Here we prove numerically that the nonuniform mesh error is due to the Lagran- 
gian formulation of Q in which the standard usage is to take the length 1 equal to Ax (i.e., 
I k + I/Z = 4 + I/Z ) This implies (for an unequal mesh) that 1= I(x). In Section 7, we argue that 
an unequal mesh, given by Axk+ ,,* = R Ax,_ 1,2, is equivalent to using (in the differential 
equations) QL = Ci p[/(~)]~(u,)~ - Cl pl(x)u, (i.e., (7.4)), where I(x), is given by (7.2): I(x)= 
2[(R- 1)x+ Ax,,J T (R + 1). For this choice of QL and I(x), we seek the exact solution of 
the differential equations and want to show that this solution contains what we have called the 
type 2 nonumform mesh error. To do this, we difference the above Qr and I(x), assuming a 
constant Axk+ l,2 = Ax,,, for test problem 1. This is the same, then, as using (QJk+,,2 = 
C~~~+,,z~~+,,~(AulAx)~+~,~- Cl A+ ,~Acdk+ liZb+ l&WAx)~+1~2, where (for equal Ax) we have 
1 k + riz = 2[(R - l)(k -t l/Z) + 1]+ (R + 1). For R = 1.05, this is seen to be identical to the calculation in 
Fig. S-where we compare just the second half of the mesh (21 <k < 40) (i.e., where the mesh interval 
Ax increases). In this comparison, we see that the solutions are essentially the same (when we exclude 
the wall heating type 1 error above). (The solution shown is also smoother than in Fig. 8 due to the use 
here of a linear term in QL. Here, QJC& C,)= Qr(1, ~)=pl*(x)(A~/An)~-&d(x) C(Au/Ax) vs the 
otherwise equivalent (but noisier) QL = 2p(Au)* in Fig. 8.) The point here is that if the unequal mesh 
(AXk + l/Z = RAxkm,,,) is used with the QL above (i.e., (7.4)) and I(x) of (7.2), then QL reduces to the 
standard QL = Cip(Az~)~- C,pC(Au). Thus both the above calculation and the second half of the 
calculations in Fig. 8 are simply different approximations to the identical difference equations, but with 
equal mesh intervals (above) and unequal intervals in Fig. 8. Since these solutions agree, it is clear that 
the numerical solution is not sensitive to equal or unequal zoning, and we conclude that we essentially 
have convergence, and indeed the unequal mesh error is already an error in the exact solution of the dif- 
ferential equations. This completes the numerical proof. 

A more practical solution to the nonuniform mesh error is to use the (Qr & HJ 
method. Using an artificial heat flux H, not only eliminates the wall heating error, 
but also allows for smoother shocks, and thus smaller Q constants Cz and Ci. This 
is shown by comparing Figs. 15 and 16. Figure 15 compares R = 1.05 and 
QL = 2p(~lu)~ with the (Qr & Hr) method-in both cases, QL = 2p(du)*. In Fig. 16, 
we make the same comparison, but with QL = p(du)* (i.e., Cz = l), and we see that 
the (Qr & HL) method produces a corresponding reduction in the nonuniform zon- 
ing error to around 3%. In both Figs. 15 and 16, we see that the (QL & Hr) 
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FIG, 15. R= 1.05, and we compare the QL and (QL & HL) methods: Qr(2,O) = 2&du)‘; and 
QL(2, 0) = 2p(d~)~ and HL(2.5, 4) = 2.5pjdul ds + fpC, de. As expected, the wall heatmg (type I ) error is 
eliminated when the heat flux term H, is included. 
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FIG. 16. R= 1.05, and we again compare QL (but here using a reduced coehicient Cz= 1) with the 
(QL & HL) method: Q,(l, 0) = p(du)‘. The solution is noisy, but both types 1 and 2 errors are reduced 
by using this smaller value of Ci. QL(l. 0) = am & HL(O, fpC,As. We see that using both QL and H, 
eliminates the wall heating type 1 error altogether and (with small Q coefficients) reduces the type 2 non- 
uniform mesh error to -3%. The (QL&HL) method is much smoother than QL alone and may be a 
practical compromise for mesh-interval changes that are not too large. 



104 W.F.NOH 

method has eliminated the wall heating type 1 error. For modest values of R, then, 
the (QL & HL) method may give sufficient accuracy; otherwise, the (QE & HE) 
method is needed, and both the wall heating error and the nonuniform mesh error 
will be eliminated. 

8. Q ERRORS IN SPHERICAL (6= 3) GEOMETRY 

The third type of Q error is related to strong shock propagation in spherical (or 
cylindrical) geometries. This error is considerably more serious (up to 1000% error 
in excess shock heating near the origin) and is also more complicated than the 
previous Q errors. This type 3 error depends on the Q formulation (i.e., QL of (2.2) 
vs Qdv) of (2.611, and also seems to depend on whether Q is treated as a scalar or 
a tensor viscosity in the formulation of the hydrodynamic equations. In particular, 
a tensor formulation due to Schulz [S] and one due to Whalen [9] produce less Q 
heating behind shocks and give sharper shocks than our standard QL formulation. 
Those sharper shocks and less central heating are instrumental in reducing this 
third type of Q error, and both of these tensor formulations are considered more 
appropriate in spherical geometry than the usual equations (2.1). 

Test problem 3 is just the spherical (6 = 3) generalization of test problem 1. Here 
the post-shock solution is, again, a set of constant-value step functions (u+, p+, E+, 
and P’) (see Fig. 17d of Noh’s generic, constant-velocity shocks). The initial con- 
ditions for the unit sphere (0 <r 6 1) are u(r, 0) = u”= -1, p(r, 0) =p” = 1, 
&(r, 0) = E’= 0, and PO= (y - 1) p”&’ = 0, and the boundary conditions are 
R(0, t) 5 0 and u( 1, t) z -1. The exact solution (for y = 5) is given in Fig. 17d, 
where u+=O, p+=64, E+=+, and P+=($)p+~+=y. The shock speed is 
&(t) = SE 4. The preshock values are u- = u”= -1, g-=~~=t), p-=p”=O, and 
the density in front of the shock is given by p = p’(1-t t/R)2. The shock position, 
R, = t/3, gives the preshock density p- = (1 + t/Rs)2 = (1 + 3)2 = 16, which we see is 
independent of t, and thus leads to the constant postshock values given above. 

Our standard test problem has 100 mesh intervals (Ar = 0.01 and K= loo), and 
the results are compared at time t = 0.6. Since the shock speed is S = f, 80 % of the 
mesh, or 80 mesh points, have been traversed by the shock, and one would expect 
accurate results. 

Unfortunately, this is not the case. In Fig. 18, the standard QL(2) =2p(d~)~ is 
compared with the original QL(o) = 2(Ar)“p(r/R)“(Av/At)’ = 2p(Au + 224 AR/R)’ 
(see (3.12)), and both are compared with the exact solution p+ = 64. The numerical 
results are strikingly poor and, in fact, hardly bear any resemblance to the exact 
solution. The error for the standard Q is seen to be on the order of 600% near the 
origin and 20% behind the shock, while the error for the original von Neumann- 
Richtmyer Lagrangian Q is roughly 1000% in the central region and nearly 40 % 
behind the shock. 

Clearly, this third type of Q error depends on the Q formulation. There are 
several reasons for this. One is related to the shockless Q heating error of Section 5, 
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FIG. 17. The exact solution at t =0.6 to Nob’s generic. constant-veioaty shock problems [2]: (a) 
initial conditions; (b) plane geometry (6 = 1) with a shock generated at a rigid wall; (c) a shock 
generated at the axis of symmetry of a cylinder (6 = 2); and (d) a shock generated at the center of a 
sphere (6 = 3). All solutions have constant post-shock states and the same constant shock speed (S = 4). 
The essential difference is the pre-shock density: p- = 1 for 6 = 1, p - = 4 for 6 = 2, and p- = 16 for 6 = 3; 
and p = pO( 1 + I/R)~-’ in front of the shock. 
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FIG. 18. This is the benchmark test problem, where dr = 0.01 (i.e., K = 100) and time t = 0.6. Here we 
compare the standard QL = 2p(~lu)~ with the original von Neumann-Richtmyer QL(v) formulation, (2.6): 
QL(u) =2(Ar)2 p(r/R)“(A~/dt)~ =2. 10e4 p(r/R)4 (Au/A~)~ =2p[Au+ ~uAR/R]~ (see (3.12)). Here QL is 
superior to QL(u), but both Q’s produce serious errors. The correct solution is p + = 64. 

since the first zone of test problem 3 is just a special case of our uniform collapse 
test problem, and we found in (5.9) that the QL energy errors went as 
d&r(~)= ?12d.sL. Thus, for 6 = 3, the error using Qr(u) is nine times as large as 
using QL. 

An even more disquieting error arises from using the Qr(v) formulation of Q, 
which preheats the gas ahead of the shock. This occurs because, in the preshock 
region, v = l/p = (1 + t/R)-*, and thus, u, = -(2/R)(l+ t/R)-3 < 0, from which it 
follows that QL(v) # 0. This preheating is, of course, not physical, but is another 
instance of a shockless Q heating error. Note, however, that our standard QL 
vanishes ahead of this shock. This error and the large shockless Q heating error near 
the origin combine to produce errors for Qr(v) considerably worse than those for 
e L9 as shown in Fig. 18. Indeed, it is surprising that the solution is as good as it is. 

Just how slowly the QL(v) solution converges is shown in Fig. 19, where the 
results are plotted for various mesh intervals (K= 50 (dr = 0.02) up to K= 800 
(dr=0.00125)). Even at K= 800, the numerical solution still has a disquieting 
error. These results show that QL(v) of (2.6) is a poor formulation and is essentially 
the reason that our definition of QL given by (2.2) is taken to be the standard Q (for 
6 = 1, 2, and 3). We stress this point, since QL(u) still seems to be in common use. 

Now, of course, there are still serious errors in the use of the standard 
Qr=2p(d~)~. This diff It mu y is analyzed in Fig. 20. The problem is seen to be 
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FIG. 19. (a) This example shows the truly large errors in density that result from using the original 
QL(v)=2(Ar)2 (r/R)4 (Au/A~)~=~~[Au+~uAR/R]* (see (3.12)) for various mesh intervals (dr). The 
comparisons are t =0.6 and Ar=0.02, 0.01, 0.005, and 0.00125, that is, for K= 50, 100, 200, and 800. 
This shows that the convergence of the density to the correct value p + = 64 is very slow indeed, and the 
error is unacceptable even for K= 800. (b) Likewise, the large errors m pressure for K = 50, 100; 200. 
and 800. The correct value is P+ = y. (c) Errors in internal energy for K= 50, 100, 200, and 800. The 
exact solution is E + = f. (d) This shows the very serious errors, using Q=(u), in the shock speed for the 
coarser grids of K = 50, K = 100, and even K = 200. Here, S = 4 is the correct solution. (Figures 19a, b, c, 
and d are courtesy of M. P. Sohn of Los Alamos National Laboratory, who used one of Los Afamos’ 
standard Lagrangian codes.) 

associated with the shock smearing due to Q, which “senses” an incorrect (i.e., too 
small) jump-off value of the preshock density (p- ). Tlhat is, the Q shock smearing 
selects a p - < 16. This error is a maximum at early times and becomes less serious 
in time as (the similarity) solution spreads out the preshock region over more and 
more mesh points, and thus the fixed shock thickness (i.e., it is always spread over 
>3 mesh points) becomes a smaller fraction of the preshock region. The key to 
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FIG. 20. The solution for Nob’s spherical test problem (Fig. 17d) is given at two different times 
(t = 6 and t = 30) for the scale variable 5 = t/R. As t increases, the preshock density profile is spread over 
a physically greater and greater distance. Hence, the preshock value p- = 16 should be progressively 
easier to resolve numerically as time advances. The wiggly line is the numerical solution using the stan- 
dard QL = 2p(~lu)~. The numerical error is so large (10% GE < 600 %) that it hardly resembles the exact 
solution, p + = 64. 

more accuracy, then, is to sharpen shocks as much as possible. We confirm this 
argument in Fig. 21, where we prove numerically that this Q error is an error of the 
Q shock-smearing method, and is thus already an error in the exact solution of the 
differential equations with Q. The argument is the same as in Section 4, where we 
seek the limit solution as Ar -+ 0 while holding 2 constant in Q = (C,Z)‘~(AU/A~)~. 
We see that the difference solution has indeed converged. Thus, this third type of 
error is related to the Q formulation, but not to the particular difference equations. 

One way to sharpen shocks, as we found before, is to use Nob’s (Q & H) shock- 
following method ((2.1, (2.2), and (2.3)). This works because using a heat flux H is 
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FIG. 21. Here we establish numerically (see Sections 4 and 8) that the difference solution (for 
Ar=O.Ol) has essentially converged to the exact solution of the differential equations wrth Q = 
(C,I)” P(u~)‘. We take Ci = 2 and I= 0.01, and thus Q = 2. low4 pi. The solid curve is for Ar = 0.01 
and QL =2. low4 p(Au/Ar)‘= 2p(Au)‘. Also, for l=O.Ol, we let Ar + Ar/2 = 0.005, giving QL = 
2. 10e4 p(Au/Ar/2)2 = 8p(Au)‘, which is plotted as dots (.), and we plot R$(Ar/2, At/2) = fR;(Ar, Af) 
(see discussion in Section 4.2). Thus, the spherical shock error is not related to the difference method, but 
is an error in the solution of the differential equations due to Q shock smearing. 

conjunction with Q makes it possible to use smaller (2 constants C’g (and C,) (while 
still keeping the noise level down behind the shock). This is shown in Fig. 22a, 
where the standard QL(2) = 2p(du)’ is compared with the (QL & HL) method using 
Q&, $1 and W4, 1). Using Q&,4) g ives sharper shocks and an improved value of 
P+> and using the heat flux H smooths our the noise behind the shock. Of much 
more importance, however, is that the central heating error is nearly eliminated. 
This is seen in Fig. 22b, where E+ N $ over the entire postshock region. Indeed, the 
results of Fig. 22, using (QL & HL) would be nearly exact if one assumed that 
p- =14.5 (i.e., p+ =((y+ l)/(y-1))~~ =4x 14.5=58, and U+ =O, E+ =$, etc.), 
and thus the only real error in the calculated postshock values is due to the shock 
smearing that picks the wrong preshock density (i.e., p- 11 14.5, as argued above). 
Just how the improvement goes with smaller Q constants Ci and C, is shown in 
Fig. 23, where it is clear that the sharpest shock gives the most accurate solution. 

In Fig. 24, the non-Q PPM of Colella and Woodward [7] produces very sharp 
shocks (on the order of one to two mesh widths). Here, they achieve high accuracy 
on the standard K= 100 test problem and nearly exact results using an accurate 
adaptive-mesh shock-following procedure, with K = 400. The K = 400 results are also 
shown to be nearly as accurate (converged) as the standard PPM solution with 
K= 1200. The effect of using an adaptive mesh is to minimize the actual (i.e., 
physical) shock thickness (which is all-important in determining the correct 
preshock value, p - = 16, and it is thus clear that such a procedure would bernefit 
any finite-difference method. 
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FIG. 22. (a) Standard QL(2, 0) = 2p(~tu)~ vs (QL & HJ, where (using smaller QL constants Ci and 
C, to give a sharper shock) Q,($, ~)=~p(~Iu)~-~~K,(du) and H,(4, 1) = 4p Ida] de + pC,d~. The 
(QL & HL) method is much smoother and more accurate than QL alone, but the error, Ap + = p+ - 64, 
is still on the order of 10 to 20%. (b) QL=2p(Au)* and the more accurate (QL & Hr) method. The 
exact solution is E + = 4, and we see that the energy error is essentially zero using the (QL & HL) method. 
These results (Fig. 21) show that the error is due to the incorrect preshock density p- and would be 
essentially exact if pm N 14.5. Then, in addition to the correct value E+ = t, we would have 
P+ = 4p- = 4 x 14.5 = 58, which IS the observed value, and thus the Hugoniot jump conditions would be 
satisfied. The difficulty is seen to be that of shock smearing. That is, the correct value p- = 16 cannot be 
accurately resolved using (Ar = 0.01). 
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FIG. 23. Sharper shocks reduce the p+ error. Errors go as Q,J 1. f) > QL(2, 0) > Q,($, 4). where, m 
each case, there is less and less shock smearing. The (QL & W,) method also allows for small Q coef- 
ficients, Co and C,, and less central heating error to produce the sharpest shock profile. 

9. SCALAR VERSUS SCHULZ’S TENSOR Q FORMULATIONS 

In 1964, Schulz [S] proposed that Q be treated as a tensor viscosity and gave the 
following (T) formulation of the hydrodynamic equations (for 6 = 1, 2, and 3). We 
include the von Neumann-Richtmyer scalar (S) formulation, (2.1), again for com- 
parison, and we note that use of the artificial heat flux, H, remains the same in both 
formulations: 

581/72/1-S 
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FIG. 24. The (non-Q) PPM of Colella and Woodward [7] has very narrow shocks ( N 1 or 2 mesh 
intervals) and for K= 100, is superior to all of the results of Fig. 23. PPM using K= 400 and mesh 
refinement (a shock-capturmg adaptive mesh) is equivalent to the standard PPM using K = 1200 and is 
thus a very important procedure for tracking shocks accurately. (Figures courtesy of P. Woodward.) 

pu,+P,= -Q,c 
Scalar(S) (9.1) 

p(E,+Pu,)= -Q u,+(S-1); 1 +& [IF’H], 

Schulz also defined a new Q, which we denote by 

Tensor (T) (9.2) 

QL(S) = c&d2 121,,1 3’2 Iu,I 1’2, if U, < 0, and 0 otherwise. (9.3) 

Here I= Ar in the difference formulation as usual. 
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FIG. 25. The lower curve uses QL(2, 0) = 2p(du)” in Schulz’s tensor (T ) formulation (Sectlon 9). The 
upper curve also uses Schulz’s (T) formulation and, in addition, his &IS, = 2p ld’uj 31z Idu/ “. Both Q 
formulations are seen to give essentially the same results. We conclude that it is the tensor use of Q that 
is important rather than the QL formulation. Thus, we stay with the standard QL = 2p(du)” usage. 

Now, Schulz’s Q,(S) eliminates the shockless Q heating error (for the uniform 
collapse problem of Section 5-since u,, = 0), and we thus might expect superior 
results for our spherical test problem 3. Indeed, the results (Fig. 25) using Q,(S) or 
QL with the tensor (T) formulation (9.2) are significantly better than using the 
scalar (S) equations (9.1), but there is essentially no improvement using QL(S) over 
using QL. We conclude, then, that the major improvement occurs because of the 
way Q enters the equations, rather than the form of Q, and we stay with our stan- 
dard QL = Cgp(du)‘. The reasons for the improved results are not entirely clear, but 
in part, the improvement follows from the formulation of (9.2), where there is less 
Q dV shock heating than for the scalar equations (9.1). That is, in (9.2), 
Q dv -+ Qu,tt independently of geometry (6 = 1,2, or 3), and thus the nonsh~~k Q 
heating term, Q(8 - l)u/R, is eliminated from the energy equation. 

In Fig. 26, we compare our standard QL(2)=2p(du)’ (T) with the (QL& 
(T) method (using QL(2) and H,(6)). The error in density is about the same just 
behind the shock, but the central heating error is nearly eliminated, as seen in 
Fig. 26b. To improve this result, it is necessary to narrow the shock width, and this 
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is done by reducing the QL constant Ci. In Fig. 27, we compare QL(a) (T) (which 
indeed has a narrower shock, but is extremely noisy) with (Q,(b) and H,(lO)) (T) 
(which is still fairly noisy, but gives superior results).’ These (QL & Hr) (T) results 
of Fig. 27 are reasonably smooth behind the shock and are essentially exact. Thus, 
we find the best all-around results for the loo-zone test problem are given by the 
(QL & HL) shock-following method using Schulz’s tensor formulations (9.2). 

The results are summarized in Fig. 28, where we compare the various Q,‘s, 
(QL & Hr), and the PPM. 

10. WHALEN’S TENSOR Q FORMULATION 

Whalen, in Ref. 9 and in a private communication, presents some remarkably 
accurate results for our spherical test problem (see Figs. 29 and 30), which were 
obtained using his covariant tensor Q formulation of the hydrodynamic equations. 
We conclude by giving his formulations for 6 = 1,2, or 3, and in particular, concen- 
trate on the case of spherical geometry (6 = 3), 

and 

pu,(J’+QR)R= -(J-l)(QR-Q”)/R 

(10.1) 

PC,+ (P+ QR)ut= (d- 1) u(Q”-Q”,/R, 

where Whalen defines 

QR=(3/2)(C,1)*p(uR-$VG) 

and 

Q”= (3/2)(C,l)‘pu,(u/R-fV.ii), 

(10.2) 

and thus 

QR-Q~=~(C,l)pu~(uR-u/R). (10.3) 

Now, let 6 = 3, then V. U = (uR + 224/R), and 

QR=(CoZ)2p~R uR-# . [ 1 
Comparing (10.3) and (10.4), we see that 

QR - Q$ = $Q”, (10.5) 

’ Subsequent tests show that the choice Ci =) and hi = 10 to be less noisy and essentially just as 
accurate as Ci = $ and thus [Q(4) & H(lO)] is to be preferred. 
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iR*H), 
f- 0-j 
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FIG. 26. (a) Schulz’s tensor Q formulation with and without the use of an artificial heat fhrx 6-I (see 
Section 9). The lower curve is the tensor (T) Q formulation using QL = Q(2) = 2p(d~)~ and H G 0. The 
upper curve is (QL & HL) (T) using QL=2p(du)2 and H, =6plduj da. This shows an obvtous 
improvement using H, with QL, but finer tuning is possible, as seen in Figs. 27a and b. (b) The 
overheating at the orrgin is greatly improved using (QL & Hr) (T), and in fact, 1s aimost the exact 
solution, a+ = +. 
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FIG. 27. Q,(t) = +p(d~)~ m the (T) formulation is very noisy, but produces a narrow shock. (For 
more complicated problems, the choice Cg = 4 may be too small, as too much noise may be generated in 
the solution and thus reduce the computatronal LIZ too severely. A more practical (but somewhat less 
accurate), all-around choice is [Q,($, 4) & HL(6, 0)] (T). That IS, a more conservative use IS 
QL=jp(d~)2-$pCsd~ and H,=6plAu\ de, but Ci=$ or Ci=$ and h,2= 10 are preferred where 
possible.) The sharp shock remains in the [Q,($) & H,(lO)] (T) method, where H,(lO) = lop [Au1 As, 
and most of the post-shock noise is damped. The density and energy errors are nearly zero; thus, the 
(QL & HL) method is a preferred shock-following procedure when used with Schulz’s tensor (T) for- 
mulation (9.2). 
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FIG. 28. A comparison of scalar (S) and tensor (T) results. The (non-Q) PPM lies above the best 

scalar (QL& H,) (S) resulls, but is under the QL (T) and (QL&HL) (T) results. The PPM [7] with 

mesh refinement and the (QL & HL) (T) method give essentially the converged (exact) solution. 

and we can write (10.1) (for 6 = 3) as 

put -I- (P + Q”)R = -3(Q”)lR 

and 

p, + (P + Q’%, = 34Q”),‘4il~ 
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Oo20 0 0.01 0.30 0.40 

Radws (R) 

FIG. 29. Whalen’s covariant formulation [9] (10.6) and (10.7), vs the scalar QL results and Schulz’s 
tensor (T) formulation (Section 9). Here, Whalen defines QL = (Div u)~ = Cip[Au + 2uAR/R]‘= Q=(u) 
(i.e., our (3.11)), QL= (Del u)‘= Cafe= QL (i.e., our (3.7)), and his tensor Qf, QL= 
Cip(Au)(Au - uAR/R). Whalen’s formulation is remarkably accurate for a 40-zone (K = 40) problem. 
(Figure courtesy of P. Whalen.) 

In the difference formulation,8 Whalen sets 1= AR, and thus 

Q:‘=C;pAu[Au-F] if Au < 0, and is otherwise 0. (10.7) 

In Fig. 29, Whalen compares his covariant formulation (10.6) with Schultz’s for- 
mulation (9.2) and the scalar equations (2.1) using various Q’s. His notation means 

Q = (Div u)‘= Q=(V) = Cip [Au+?] (i.e., our (3.11)]; 

Q = (Del u)‘= QL = Cgp(d~)~ or our (3.7); 

and from (10.7), 

Qc(tensor) = Cip(Au) 

Whalen’s covariant results are clearly superior to the other (2 formulations, and 
when we consider that only 40 zones (K= 40) are used in Fig. 29, then his for- 
mulation proves to be remarkably accurate. In Fig. 30, the effect of relined zoning is 

s A word of caution: we were not able to reproduce Whalen’s results wrth the most straightforward 
differencing of (10.6) and (10.7). In particular, (10.7) vanishes for the most central zone where Au = u 
and AR = R (i.e., II AR/R = (u/2) R/(R/2) = U, and thus Au-u AR/R=O]. In a like manner, Q,” also 
vanishes for our uniform collapse problem of Section 5, and this may contribute to his accurate results 
here. In any case, some subtlety is involved, and we await further clarification from Whalen on this sub- 
ject. 
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FIG. 30. Whalen’s covariant tensor Q formulation, (10.6) and (10.7), where his tensor Qt is given by 
Qt = C;p /Au/ [AU-MAR/R]. The post-shock density is essentially correct (PA,,, = 64), even for K= 25, 
and the convergence is considerably more accurate than for the scalar equations. (See Fig. 19 for a com- 
parison of the effects of zoning on convergence.) (Figure courtesy of P. Whalen.) 

shown for Whalen’s covariant equations (10.6) and (10.7), and the results show a 
rapid convergence. Indeed, his results are remarkably accurate even for K= 25. 
Now, the type 1 (central, or wall heating) Q error is still present with this for- 
mulation (as it is for all Q formulations-see Section 4) and suggests that near- 
perfect results would be obtained bu including Noh’s heat flux N in a (QF 
shock-following method. 

11. CONCLUSION 

We conclude that the Q errors of types 1, 2, and 3 are not due to errors in any 
particular difference-method solution, but rather, the Q errors are intrinsic to the 
artificial-viscosity-Q shock following method itself. That is, these Q errors are con- 
tained in the exact solution to the differential equation with Q. Therefore, 
improvements must be sought in modifying the Q method itself (e.g., by using a 
tensor formulation or using both Q and H to follow shocks or to minimize the 
physical shock thickness, as in the non-Q PPM). More generally, since the 
are shown to be related to the (artificial) shock thickness of the shock- 
procedure, then all methods will benefit from using an adaptive-mesh shock- 
capturing procedure. In all cases, narrow shocks produce the least error; thus the 
(QL & HL) shock-following method, which allows the use of smaller 
stants-and thus sharper shocks-is to be preferred over Q alone; and mos 
tant, the inclusion of an artificial heat flux H minimizes the excess Q 
generated on shock reflection. In particular, it is shown that the (Qr & I-IL) 
using Schulz’s tensor (T) formulation (10.2) with minimal Q constants C$ a 
most satisfactory. 
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