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The artificial viscosity (Q) method of von Neumann and Richtmyer is a tremendously
useful numerical technique for following shocks wherever and whenever they appear in the
flow. We show that it must be used with some caution, however, as serious Q-induced errors
(on the order of 100%) can occur in some strong shock calculations. We investigate three
types of Q errors: 1. Excess Q heating, of which there are two types: (a) excess wall heating on
shock formation and (b) shockless Q heating; 2. Q errors when shocks are propagated over a
nonuniform mesh; and 3. Q errors in propagating shocks in spherical geometry. As a basis of
comparison, we use as our standard the Lagrangian formulation with Q= C%p/*(u,)% This
standard Q is compared with Noh’s (Q & H) shock-following method, which employs an
artificial heat flux (/) in addition to Q, and with the (non-Q) piecewise-parabolic method
(PPM) of Colella and Woodward. Both the (Q & H) method and PPM (particularly when
used with an adaptive shock-tracking mesh) give superior results for our test problems. In
spherical geometry, Schulz’s and Whalen’s tensor @ formulations of the hydrodynamic
equations prove to be more accurate than the standard Q formulation, and when Schuiz’s for-
mulation is combined with Noh’s (Q & H) method, superior results are achieved.

1. INTRODUCTION

The artificial viscosity (Q) method of von Neumann and Richtmyer [1] is a
tremendously useful numerical technique for following shocks wherever and
whenever they appear in the flow. However, as we shall see, it must be used with
some caution, as serious @-induced errors can occur in some calculations of strong
shocks.

We investigate three types of Q errors:

1. Excess Q heating, of which there are two types: (a) excess wall heating on
shock formation and (b) shockless Q heating;

2. Q errors when shocks are propagated over a nonuniform mesh; and

3. Q errors in propagating shocks in spherical geometry.

We use, as a basis of comparison, the Lagrangian formulation of the
hydrodynamic equations given in Ref. 1, with the standard Q = C%pl*(u,)> In Sec-

* This work was performed under the auspices of the United States Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.
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CALCULATIONS OF STRONG SHOCKS 79

tion 2, the Lagrangian differential equations with Q (in plane (6 = 1), cylindrical
(6 =2), and spherical (§ =3) geometry) are given, and we include an artifical heat
flux H=hZpl* {u,| ¢, used in Noh’s (Q & H) shock-following method [2]." For our
comparisons, three Q’s are defined: Q;, O (v), and Qg. Q. (the standard Q above)
and Qy(v) (the original Q of [1]) are referred to as Lagrangian (L) formulations,
in that they spread shocks over a fixed number of (Lagrange) mesh intervals { ~3),
independent of their actual physical size, while Qg is referred to as an Eulerian, or
fixed-length formulation of @, which spreads shocks over a fixed physical
{Eulerian) distance (~34x,.). Only Q,(v) depends on the geometry d (see [3,
p-319]), and as we show later, this dependence on ¢ introduces the most shockless
Q heating error of any Q and the most @ error for shocks in spherical geometry.
Thus, Q;(v) is not a preferred choice. We also define two H's, H; and Hg, where
H; is used in conjuncton with Q;, and Hg is used with Qg in the (Q & H) method.

In Section 3, we give the difference equations and formulations of the ’s and
H's. The nominal difference formulation of Qy is O = 2p(4u)?, in which the / of the
standard Q is taken to be equal to the Lagrange interval (4x), and the coefficient
(% =2. This is the benchmark Q used in our comparisons. We refer to this use of 0,
as the standard calculation.

There are two excess Q heating errors: (1) excess wall (or piston} heating due to
Q, which occurs on shock formation (e.g., at a rigid wall where a gas is brought to
rest and a shock is propagated away, or at the sudden startup of a piston) and (2)
0 heating for shockless compressions (i.¢., when u#, <0 and no shock is present}.

In Section 4, we investigate the wall heating Q error in test problem 1. This is an
infinite-stength, constant-velocity shock in a perfect (y=3) gas. A cold gas
(¢° = P°=0), initially moving with velocity u°= —1, is brought to rest by a rigid
wall located at the origin. A shock is generated at the rigid wall and moves to the
right with constant states (u* =0, p* =4, ¢* =0.5, etc.) and a constant shock
speed (S=1).

The excess wall heating error occurs in the first few zones near the wall and
shows up as overheating, or what is equivalent, a dip in the density (Fig. 1}. (That
is, since the post-shock pressure P* is nearly constant, then, for P* =(y—1)p*e™,
a peak in ¢* results in a dip in p*.) This error goes with the size of the @ coef-
ficients, C% and C; (Fig.2), and is also seen to depend on the Q formulation
(Fig. 3). That is, in Fig. 3, we see that the error is larger for Q than for @, (with
the same size coefficients C} and C,). By numerical arguments (Section 4.2), and
from Fig. 4, we see that this Q error is inevitable and is, in fact, built into the exact
solution of the differential equations (2.1) with Q given by (2.2). Indeed, we argue
(Section 4.2) that such a wall heating error will occur for any shock-smearing
method (in the absence of heat conduction), whether a viscosity Q occurs explicitly
in the method or not. Now, because the (Q & H) shock-following method does

' The idea behmnd the (Q & H) shock-following method is to approximate nature more closely by
smearing shock discontinuities using artificial heat conduction as well as artificial viscosity. In particular,
hot spots caused by using Q alone are eliminated. or at least reduced by using both @ and H.
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80 W. F. NOH

include an (artificial) heat-conduction term H, then, as in nature, the excess wall
heating error is eliminated. This is seen by comparing Fig. 5 (no heat conduction)
with Fig. 6 using the same Q as in Fig. 5, but with the heat flux H # 0, and indeed
the wall heating error has been eliminated.

In Section 5, we investigate the shockless Q heating error using a class of test
problems (with exact solutions for all geometries d) called uniform collapse [5].
Here, the fluid is shockless, even though it is everywhere compressing. In the Q
method, an energy error, de, occurs for Qr, Qg, and for Q;(v). In particular, in
spherical geometry (§ = 3), the Qy (v) energy error, de¢; (v), is nine times as large as
the Q, energy error, de; (ie., Adey(v)=05%4e; =94¢.). This fact strongly rules in
favor of our use of Oy = 2p(4u)? as the standard Lagrange formulation of Q, rather
than the original Q, (v} suggested in Ref. 1.

In Section 6, we investigate the second type of O error by introducing a non-
uniform mesh (4x, ., = RA4x,, where R is a constant) into problem 1 (see Fig. 7).
As our standard Q, we use Q; =2p(4u)* and compare the Q, errors for R = 1.05,
1.15, and 1.25 in Figs. 8, 9, and 10. Because the type 2 errors approach 100 %, they
can be a serious concern. A remedy is to use Qg, the fixed-length Q (Fig. 11). Here
we see that Qp completely eliminates this nonuniform mesh error, but that the wall
heating error is very large. By using both Oy and Hg in the (Qg & Hg) method
(Fig. 12), we see that all error is eliminated. That is, the (Qy & Hy) shock-following
method offers a 100% fix for both the type 1 and type 2 errors.

Unfortunately, using Qp spreads shocks over a fixed physical distance of
~34x,,.,, which is unacceptable in those regions of the problem where a smaller
mesh interval occurs. Now this nonuniform mesh error clearly depends on the Q
formulation, and we can ask, “Is it possible to find a Lagrange (L) formulation of
0 (i.e., where /= 4x) for which this type of error is also zero?” The answer appears
to be that this is unlikely, because comparisons of other Q;’s [6] (see Fig. 13) show
a comparable error for all of the Q;’s tested.

Section 7 contains a theoretical explanation for the errors associated with letting
[=A4x in Q, . This implies that / depends on x [ie., /=1{(x)] in the differential for-
mulation of @, which, in turn, leads to a fictitious frame-of-reference velocity in
the differential equations. This fictitious frame of reference is then shown to account
for the observed errors. As a result, this error (due to letting /=/(x)) can be expec-
ted in all Lagrangian formulations. The fact that this error is already an error in the
solution of the differential equations is established numerically in Fig. 14.

As we note in Fig. 13, the nonuniform mesh error increases with Cj and C,, and
thus we would like to minimize C2 and C,. In particular, the (Q, & Hy) method
permits us to use considerably smaller Q; coefficients, while at the same time
eliminating the type 1 wall heating error. This can be seen in Figs. 15 and 16, where
indeed the wall heating error is eliminated altogether, and we note that using Hy
with Q; results in smoother shocks. Having smoother shocks permits us to reduce
the Q. constants. In Fig. 16, when we take C32=1 and C;=0, we sce that this
choice minimizes the type 2 error. The (Q & H;) method thus is an acceptable
procedure if the unequal zoning is not too severe.
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In Section8, we investigate the spherical-geometry { errors using Noh’s
sphericai-shock test problem [2] (Fig. 17), which for d =3 is just a generalization
of test problem {. This type 3 error is considerably more complicated than the
previous @ errors, in that it depends both on the @ formulation [e.g, O, vs
0. (v)], and also as to whether Q is treated as a scalar viscosity as in Ref. 1 oras a
tensor viscosity, as given by Schulz [87] or Whalen [9]. That the errors are truly
enormous is seen in Fig. 18, where the error for the standard @, formulation is
nearly 600% near the origin and nearly 1000% for @ (v)—the original definition
of Q (when generalized to spherical geometry) given in Ref. 1. In Fig. 19, we see just
how serious this error can be and how slowly the solution converges to the ¢xact
solution (ie., p* =64). Indeed, even for 800 mesh points in the unit sphere
(K = 800), there is still a considerable error near the origin.

The explanation is given in Fig. 20, where we show that the error results from the
finite shock thickness, which prevents the Q method from determining the correct
preshock density. (That is, the shock spreading picks p~ <p...=16). In Fig. 21
we argue numerically (as in Section 4) that this type 3 error is already in the exact
solution of the differential equations with Q (and is thus not related to any particular
difference method). Indeed, the error is due entirely to the finite shock thickness.
We conclude that sharper shocks give smaller @ errors. This is shown in Fig. 22,
where the 0, and (Q; & H;) methods are compared. The (Q; & H, ) solution gives
both smoother and more accurate results, and indeed, Fig. 22b shows the internal
energy using (Q & H) to be essentially correct (ic., ¢ 7 =3).

By comparing various Q;’s and {Q; & Hy) in Fig 23, it is clear that sharper
shocks produce less error. The (non-Q) PPM of Colella and Woodward [7]
produces even sharper shocks (Fig. 24) than any of the @ methods (i, PPM
spreads shocks over only one or two mesh intervals), and thus, for the 100-zone
unit-sphere test problem, PPM is superior to all of the scalar (S) @, or (@, & &)
methods shown in Fig. 23. The small error in PPM is further reduced by using an
adaptive mesh technique to capture the shock. The results (Fig. 24) show that using
400 zones (with an adaptive mesh) is equivalent to a 1200-zone (essentially con-
verged) normal PPM problem.

Section 9 contains Schulz’s tensor @ formulation (T} of the hydrodynamic
equations., along with his artificial viscosity, O, (S), definition [8]. The calculations
using this tensor formulation (Fig. 25) show a significant improvement over the
standard scalar (S) solutions (e.g., Fig. 23). However, only a slight improvement is
obtained using Schulz’s O, (S) over the standard O, , and we conclude that it is the
tensor equations (T) that are important, and not so much which @, formulation is
used. In Fig. 26, the (T) formulations for @ (T) and (O & Hy) (T) are compared.
Figure 26b shows that the energy error is almost zero using the (Qp & Hy) (T)
method. Again, sharper shocks reduce this type 3 error, and nearly exact resuits are
achieved using a very small @; constant (C;=1) and by employing the (Q; & H} )
(T) method (Qy = (4)(4u)? and H; = 10p |4u| 4¢, Figs. 27a and b). In Fig. 28, the
various Q’s, (Qp & Hy) methods, and (non-Q} PPM are compared. The best
results [in the standard 100-zone (K= 100) problem are obtained using the tensor
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formulation of the (Q; & H.) method with a small Q; coefficient C3. The best
overall results are obtained with the (non-Q) PPM using an adaptive-mesh shock-
following procedure, where, however, one should note that 400 mesh points are
used in the shock-capturing procedure vs 100 mesh points for the other methods.
The point to be emphasized here is that adaptive-mesh procedures can define
shocks very accurately and are suggested for all shock-following methods.

Section 10 contains Whalen’s [9] tensor formulation of the hydrodynamic
equations and his definition Qf of a tensor Q. His results, shown in Figs. 29 and 30,
are remarkably accurate, even for a mesh as coarse as K= 25 (Fig. 30). It is not yet
clear whether his tensor formulation gives equally good results for more com-
plicated shock problems, and we await further word on this from Whalen. Clearly,
though, his formulation, (10.6) and (10.7), produces the most accurate (Q only)
results for our test problem and needs to be investigated further.

In Section 11, we conclude that the Q errors of types 1, 2, and 3 are not due to
the difference-method solution, and thus our difference equations do not contribute
to the Q errors that we investigate. Rather, Q errors are intrinsic to the artificial
viscosity (Q) shock-following method itself, and are thus already contained in the
exact solution to the differential equations with Q. Consequently, improvements
must be sought to modify the Q method (e.g., by using a tensor formulation and
using both @ and H to follow shocks) or to minimize the physical shock thickness,
as in the non-Q PPM, or more generally by using an adaptive-mesh shock-
capturing procedure. In all cases, narrow shocks produce the least error.

2. LAGRANGIAN FLUID EQUATIONS
WITH ARTIFICIAL VIscosiTY Q AND HEAT FLux H

Von Neumann and Richtmeyer [1] considered their artificial viscosity Q to be a
scalar quantity, and we take their formulation of the Lagrangian fluid equations as
our standard. Also, the new (Q & H) shock-following method of Noh [2] (which
uses an artificial heat-flux H in addition to the artificial-viscosity Q to follow
shocks) is included in the formulation.

2.1. Differential Equations

The independent Lagrange variables are r and ¢, where r is taken as the initial
position of the Eulerian (physical) coordinate (i.e., R(r,0)=r); and w, p, ¢, P, O,
and H are the velocity, density, internal energy, pressure, artificial viscosity [1],
and artificial heat flux [27, respectively. A more useful independent variable
is the mass, m, where, by the conservation of mass, we can write
dm=38pR° ' dR=6p°° ' dr=p°dr®, and the differential equations for plane
(6 =1), cylindrical (6 = 2), and spherical (§ = 3) geometries are as follows (with the
usual notation df/dt = f,, df/or = f,, of/Om = f,,, etc.):
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u,= —6R°"YP+Q), momentum
R,=u position
v=(1/p)=(R%),. mass (2.1)

g,=—(P+QWw,+06(R°"'H),  energy
P="P(p, ) equation of state

and where Q and H are to be specified.

2.2. Definitions of Q and H

We include linear terms in @ and H [2, 57. These are used in some of the O error
comparisons to produce smoother shock profiles, but otherwise do not affect the
errors that we consider. The subscripts L and E refer to whether the space
derivatives are in terms of the Lagrangian independent variable, », or in terms of
the Eulerian (physical) space coordinate, R:

Standard Lagrange Q:

C2plP(u,)* — C,pC,lu if u,<0
2 — 0 r 1 sHhrs r ’ 3
auct co={g N, (22)
Standard Lagrange H:
h2pl \u,| e, +h pC,le if 0, #0
H hz h — 0 rl ©r 1 stOpa L il 23
L( 0> 1) {0, lf QL:O, ( )
FEulerian (fixed-length) Q:
CiplP(ug)’— C,pCi,lu if up<0
C2 — 0 R 1 sHERS R > ) y
Qe(C3, Cy) {0’ T {2.4)
Eulerian (fixed-length) H:
h2pl lug| ex+h pC,le if Qg#0
H hz — 0 R R 1 s*CR> E I 25
(3 h) {0’ 0o (25)
Original Lagrange Q [1]:
(Cop’l)p(r/RY* ~*(v,), if »,<0,
= ?
O.(v) {0, i 030 (2.6)

where C,, C,, hy, and h, are dimensionless constants; / is a constant with the
dimensions of length and is related to the shock width (~3/); C, is the local speed
of sound; and in (2.6), p° = p(r, 0) is the initial density.
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We note that the Lagrangian and Eulerian formulations, Q, and Qg, and H
and Hyg are related by the Jacobian J= R,, where for the quadratic terms (ie.,
setting C, =0 and 4, =0)

QL=R} 0k and Hy =R} Hg,
or, in general,
01(C3, C1)=Qel(CoR,), C1R,]
and
Hy(h3, hy) = He[(hoR,)? 1y R,].

Equation (2.6) is the original von Neumann—Richtmyer Q formulation expressed
in terms of the specific volume, v=(1/p), and is the only Q here to depend on the
geometry () (see also [3, p. 319]). In particular, both (2.2) (with C; =0) and (2.6)
are identical for plane geometry (d=1). That is, from (2.1) and é=1,
v,=R,,=R,,=u,=(1/p°)u, from which it follows that (2.6) reduces to (2.2). This
also points out that (2.6) is indeed a Lagrange (L) formulation of Q.

In the Lagrange formulation (L), the standard use is to take /= Ar, which spreads
shocks over a fixed number (~3) of mesh intervals (4R) (regardless of their size).
In the Eulerian (fixed-length) formulation (E), shocks are spread over a fixed
(physical) length (~3!), again independent of mesh size. Hence in the Eulerian for-
mulation, one must take /~ AR_,, = Ar.... That is, to define a shock numerically,
it must be spread over at least two or three mesh intervals (AR), and thus for Q,
we should take /~ AR_,,,; but it generally suffices to let /~ Ar,,, = AR? . , and we
do this for our problems.

The usage, when H is included, is to take Q@ and H, together and Hy with Q.
These are referred to as the (Q & H) shock-following method.

max

3. DIFFERENCE EQUATIONS

Here we essentially follow the staggered mesh (in time and space) difference for-
mulation of the fluid equations given by von Neumann—Richtmyer [1]; however,
we deviate slightly from their formulation to ensure that total energy is conserved.?
These equations have proven to be very accurate over the years, and indeed, we
conclude that they are very accurate for our study of strong shock errors.

2 A final pressure P"+!=P(p"*+ 1, g"+1) is available; however, it 1s not compted. This is done so that
the total energy defined (in the sense of Trigger and Trulio [4]) as e"*! = (Ju" 32y + 172 L g+ s con-
served. This is ensured if the final pressure is indeed given by (3.5), and £”*! by (3.6). (In Ref. 1,
Pr+ly P of (3.6) is taken to be P"+'+ P"420"+172 je., only the latest Q is used in the energy
equation; and in Ref. 4, this choice is shown not to conserve total energy.)
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3.1. Difference Equations for Plane, Cylinder, and Sphere (§=1, 2, 3)

Let P*=P" + Qn_m; (AP)ZZPZ+1/2_P_271/2’ Amk+1/2=92+1/2(72+1 “-’fi)- and
Amy=YAmy .\, + Am;_ ), etc. Then (for constant A7),

o At
up V2 =y =12 (RMYP-YAPY,, (3.1)
Am,,
RV =R+ At 12 (3.2}
(R(S) nA41
n+1  __ .
Uk+12 ™ [Am . {3.3)

and the energy ¢ is evaluated in two passes (see footnote 2) (with all subscripts at
k+1)

_ S At
§n+1:Sn__Pn(Un+l n)+ A(R5\1H) (34)
Pn+1:P(pn+l,§n+l)’ ‘:35)
pn+l+l_)n 5AZA dfiHn R5A1~ n+1
8n+I:8”-‘( )(Un+l_vn)+ [(R ) +( H) ], (\36)
2 Am 2

Where Hn +1 — H[pn + 1,’2’ un + 1/2’ a1 .

Difference Definitions of Q and H

We restrict our definitions to the quadratic terms (i.e., set C; =%, =0), since the
linear terms follow similarly. Let

(Ar)k+l/’2:rk+l_rka (AR)k+1/2=Rk+l_Rk7 (Au)kﬂ/z:uk“‘“”ka
and define
_ (Au)p 12 if (Au)"“’,%<0
A n 172 +1/2 k+1 37
(i iz {0 it (du)ti3>0, G
then the difference formulations are given by
Standard Q: (Q,); 3= C3Lp(42) 17112, (3.8)

which is obtained by taking /= 4r in (2.2) and likewise in {2.3) to obtain the

(p 14al it i3 (p |4a)i™ i3 ]
p 2 = = gz —g" ), (39}
(p @)L+ (p | dal iz e e

Standard H: (H_ )= 2h2[

A# 2yn+1/2
Fixed-length Q: (O )T 13=(Col)* | p|— , (3.10}
AR k+1/2
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and

[ raapyee oy gapyee |
\p |Z—§’}k+l/2 \p !Hljk—l/z [8Z+1/2_821/2

11
<p‘ﬂ >n+1/2+<p Aﬁ >n+1/2 RZIi—RZti]’ (3 )
4R k+1/2 k+1/2
the fixed-length H.

AR
In (3.10) and (3.11), / is taken to be (a constant) /= (4R}, /;)max, and shocks
will then be spread over a length (2~3/). The original von Neumann—Richtmyer [1]
Q. (v) of (2.6) is given by

(Hg)i = 4(/101)2

r 26-2 syn+l g0 2
[QL) i H R =(Cop®)(Ar)2 . 1 pppt V3 (— Sz _EHIZ) 0 (3.12)
R k+172 At

if Av/At <0, otherwise 0. Or, in divergence form, (i.e., (2.6) can also be expressed as

=

NN S e

A4
if —Zg <0, otherwise 0. (3.13)

We also note that, of the Q’s and H’s, only Q; (v) depends on the geometry 9.
We will abbreviate (3.8) to Q;(C2) = CZp(4u)’ or, more generally,

01(C3, C1)=Cip(du)’ — C;pC(4u) (3.14)

in the test calculations. Likewise for Hy(hZ, h,), etc. The nominal value for C2 is
taken to be 2; so that our standard calculations will be denoted by

01(2) =2p(du)*. (3.15)

4. Excess Q HEATING ERRORS

4.1. The Wall Heating Error Test Problem

Test problem 1 is that of a constant-state, constant-velocity shock of infinite
strength (i.c., the preshock pressure P~ = P°=0). The shock is generated in a per-
fect (v =3) gas by bringing the cold (¢°=0) gas to rest at a rigid wall. This is just
the familiar constant-velocity, piston-driven shock, but in a frame of reference
where the piston (here a rigid wall at x=0) is at rest. The particular initial con-
ditons chosen are u®= —1, p®=1, =0, and thus P°=(y — 1) p%°=0. The post-
shock solution is u* =0, p™ =4, ¢* =1, and P+ =# (see Fig. 17b, =1). In Fig. 1,
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I T T I T T
4 A AT av.a g VAV‘VAV VA ‘l
%
A
Q 3p .
2 4
2
D
[a]
2 k _
1 I | | 1 | |
0 0.2 0.4 0.6 0.8 10 12 14
Distance X
Ratio

FiG. 1. The standard calculation, where Q; = 2p(Au)® The shaded area is the error in density due to
the type 1 wall heating error. That is. P =(2/3)p e ™, and for this problem, P is correct; therefore, the
density error in p* is inversely related to the error in ¢*. In other words, a too-large value of s * implies
that p ™ implies that p* is too small.

I I ] I

— Exact
/ solution

Density 0

1 | L 1 !
0 0.2 0.4 0.6 0.8 1.¢

Distance X

FiG. 2. When we compare curve 1, Oy (1, §) = p(4u)? ~ 1pCs(du), and curve 2, Q1 (4, 3) = 4p{du) —
2pC¢(du), with the exact solution, we see that the wall heating Q error increases with the magmtude of
the Q) constants C3 and C;.
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I I

F I T T T
Prc—o, 013
4 |, —Exact
solution
Qg (1, 1/3)/

Density 0

(2]
AR

|

2 —
1 ! 1 | | I J
0 02 04 06 08 10 12 1.4

Distance X

FiG. 3. The wall heating error (shaded regions} is larger for Qp than for Q; with the same size coef-
ficients C§ and C;. Thus, this error also depends on the Q formulation to some extent.

p™ is plotted for our standard calculation using Q, (2) = 2p(4u)> The wall heating
error (the shaded area) occurs typically in the first three zones next to the wall (or
piston).

Figure 2 shows the dependence of the wall heating error on the magnitude of C3
and C,. Here, Q,(1, 1) is compared with Q| (4, 2) (i.e., C;— (2C,)? and C, - 2C,)
and the exact solution. Clearly, the 4p ' error increases with C3 and C,. Con-
sequently, the smaller the coefficient C2 (and C,) the better,” and as we shall see
later, all of the Q errors that we investigate increase with C} (and C)).

Figure 3 is a comparison of p;~ with p for Q; and Qg (with C2=1and C;=1}
for both @’s). The error Apf =pt..—pg =4-—p is seen to be considerably
greater than the error Ap; . This shows that the wall heating error depends to some
extent on the Q formulation; however, it cannot be eliminated by some new
definition of Q, since (as we shall show below) all shock-smearing methods,
inevitably, have some wall heating error.

4.2. Theoretical Discussion

We want to demonstrate that the wall heating Q error is unavoidable and is
already an error in the solution of the differential equations with Q. The proof is
numerical in that we seek convergence using mesh refinement. We consider Q of
(2.2) as typical. We want to hold 1 fixed in (2.2) and seek convergence to the exact
solution by letting Ar — 0. We can do this most simply by noting first that the effect

3 In particular, a noisier shock results from the use of a smaller C? (and C,), but this noise does not
seen. in practice, to result in any numerical error. Thus, a noisier shock is to be preferred (even though
a smooth shock 1s esthetically more appealing). We note later that one of the main advantages of the
(Q & H) shock-following method 1s that shocks are much smoother when a heat flux H is used in
addition to @, and thus one can use even smaller constants C2 and C,.
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on Q of decreasing Ar (while holding / constant) is simply equivalent to increasing
C, and C, in (3.8). For example, letting 4r — 4r/2 (and letting 4t — At/2—which
maintains stability in the difference equations) is equivalent to just doubling the O,
constants C, and C,(i.e., letting Cy— 2C, and C, - 2C,). Second, in the remaining
equations (3.1)-(3.7), R} simply scales. That is, for 4r — Ar/2 and Af — 4:/2, then
Ri(Ar/2, At/2) = 1R%(4r, 41). Let us prove this. We take

A=At/ Ar (4.1)

to be a constant, and from (2.2) and (3.8) we define a more general difference for-
mulation of O (which reduces to (3.8) for /= 4r); namely,

I\? i
Qi(dr. Cy, Cy, D= <C0—> ;)(AL'z)z—(C1 ~> pC, Aa, 4.2
Ar Ar
from which it follows that
Q.(4r/N, Co, C,, 1)=Q(dr, NCo, NC{, D). {4.3)

That is, holding / fixed {(and equal to 4r in (4.2)) and letting 4r — Ar/N is simply
equivalent to letting Cy — NCy and C, — NC| in (3.8). To show the scaling of R} in
(3.1) to (3.8), we note that

R YAr, Aty=k Ar+ At Y, w2 = Ar [k +AY Ut “2] =ArR*H1, A), (44)
1=0
which completes the proof.
Thus, for example, if we let Ar —» 4r/2 (and since 4 is constant, then A1 — A41/2),
we find from (4.4) that

RI(Ar[2, At/2) = (Arj2) Ri(1, 2) = (1/2) RX(4r, At), (4.5)

as noted above, and from (4.2),
QL(Ar/z, CO5 Clﬂl):QL(Ars 2C0a 2C1?1)7 {46)

which for /= Ar is simply equal to Q; [(2C,), 2C,] in the notation of (3.8). From
(4.5) and (4.6) (i.e., letting Ar — Ar/2), we can compute

0 1 dr)2, A1)2, Co, Cy D)= pi o Ar, 41, 2C,, 2C,, 1. (&.7)

1

and the refined mesh results can then be plotted by using (4.5} and {4.7). That is,
we find the left side of (4.7) by simply letting €3 — (2C,)* and C, - 2C, in (3.8)
and plot these results (which will be in terms of 4r and A?) using (4.5).

This provides us with another interpretation of Fig. 2; calculating (using (3.8))
with O, (4, 2) (ie., C3=4 and C, =2) is identical to using (4.2) with /=001, C;, =1,
and C,=0.33 and to a mesh refinement of Ar/2=0.005. That is, from (4.2)
0.(0.005, 1, %, 0.01)=p(0.01)*|4u/0.005 —1pC (0.01) |4u/0.005| = dp |du|> —
2pC, |Au|, which is just O(4, 2) in our usual notation for (3.8). Also, if curve 2 of
Fig. 2 is plotted letting R} — ($)R% (ie., a plot of (p%, (3)RY)), it then represents a
mesh refinement of curve 1 (holding /=0.01 fixed). This is done in Fig. 4, and we
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I I T T
o Ax=0.01
s Y1 lution |
LAX = 0.005 xact solution
3 —|
Q
F
2
3
a
2+ —|
1 1 B | L
0 0.2 0.4 0.6 0.8 1.0

Distance X

FiG. 4. For this calculation we compare 4x=0.01 with 4x=0.005 and evaluate R}(4x/2, At/2) as
1R}(4x, Ar). That these two curves have the same wall heating error proves (as argued in Section 4.2)
that the wall heating error is really an error in the exact solution of the hydrodynamic equations (2.1)
with Q. That is, the curve labeled 4x =0.005 is equivalent to a mesh refinement of 2 (where 4x — 4x/2
and 4t — At/2) of the curve labeled 4x =0.01, and it is clear that the solutions are essentially converged.
This also gives the correct interpretation of the results of Fig. 2.

see that the difference solution is essentially unchanged with respect to the wall
heating error.*

We conclude, then, that wall heating is inevitable for our difference solution,
since it already occurs in the exact solution of the differential equations (2.1) with Q
given by (2.2). (The same conclusions hold for any @ formulation using similar
arguments, or indeed for any shock-smearing method, as observed by Colella and

* The overshooting in density is also reduced for 4r=0.005 (ie., letting Ar — Ar/2); indeed, this
overshooting error would vanish as Ar — 0. However, the wall heating error would remain. Thus, the
wall heating error is indeed part of the solution of the differential equations with @ and depends on the
size of the length, /—here, /=0.01.



CALCULATIONS OF STRONG SHOCKS 91

Density o

1 | ] I ! L
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Distance X

FiG. 5. 0, =2p(du)® —1pCg du. These small Q, constants Cy, and C, reduce the wall heating error,
but do not eliminate it.

Woodward [7]. Their more general result follows from total-energy considerations,
which show that, in shock smearing, too much work is done when a shock starts
up, or as here, when a shock is formed by bringing the gas to rest. Thus, wall
heating is inherent in all such shock-smearing procedures.)

In real fluids, heat conduction is present, and excess wall heating cannot occur
(since any hot spot would be quickly dissipated). This is the basis of Noh’s (Q & H)

-7—3LthGAA_Lm4_\_AAA_IQJ_\A_uJa,AL_Mwu¢i A sac o ﬁ|agwmmum7

artificial heat flux H (in conjunction with the usual artificial viscosity Q) to smear

I T T
4 o
a 3+ ]
z
g
[=]
2 —
1 ! | i | L
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Distance X

Fig. 6. Q,(3,4)=2%p(du)? —LpCy(du), and H, (0, 3) = 3pCsAde. This 1s the same Q used in Fig. 5, but
now the artificial heat flux H is included 1n the energy equation, and the wall heating error has been
eliminated. We also note that the shock solution is smoother using # (in conjunction with Q).
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out shock discontinuities. In Fig. 5, one should compare Q,(C3, C,)= Q(3 %) with
Fig. 6, where Q( (3, 1), and the heat flux H( (0, 3)=(3)pC, 4¢ is used. As expected,
the wall heating error is zero. We also note that the (Q, & H) solution is con-
siderably smoother. Indeed, this is one of the chief advantages of the (Q & H)
method; namely, it permits the use of much smaller Q constants C} and C; (which,
in general, reduces Q errors) and still maintains a smooth (or smoother) shock
profile.

5. SHOCKLESS Q HEATING ERRORS

This is the situation where a compression wave exists (and thus u,<0 and
Q #0), yet the exact solution is shockless. For this analysis, we consider the useful
uniform collapse problem (see [5, p. 60]), in which a flow is everywhere undergo-
ing a compression, but no shock develops. We consider a unit “sphere” (0<r<1)
(for planar, cylindrical, and spherical geometries; i.e., for d =1, 2, or 3), and to sim-
plify the analysis (of the energy errors due to Q) we take the pressure to be just a
function of density: P= P(p).

The initial values are u(r, 0)= —r, p=p° e=¢°% and P°= P(p°). The boundary
conditions are u(0,t)=0 and u(1, )= —1. The exact solution is that the fluid
simply coasts with its initial velocity (#°= —r) until all points uniformly collapse
onto the origin R=0, at time 7= 1. It is easy to verify that the exact solution is
given by

u(r,ty=—r, R=r(1—t) and v=(1/p)=1-)°(1/p°%. (51)

Thus, p = p(t), P= P(p)= P(t), and since &, = —Pv,=/p°P(t)(1 —t)° ", then also
e¢=¢(1), and no shocks are present. We now show that Q=0Q(r)#0, and thus Q
will modify the exact solution. From (5.1), we let 7= (1 —¢), from which p = p% —°
and we calculate Q;, O, and Q, (v),

5

L= (Col)’p(u,)* = (Col)*p%t 7, (52)
(which is not set to =zero, since it passes the test u,= —1<0). Also,
ug=u,/R,= —1 '<0, and thus Qg #0 and
Qe = (ColPp(ug)*=(Col)?pr= 042 (5.3)
Likewise, .
0.0)=(Copp (5) (02 =3 (Col)n"% (54)
since v, = —(6/p°)*° 1 <0.

In particular, we note that
01(v)=0%Qy, (5.5)
thus Qp < @, (v). Also,

Q. =7"0s< 0 (asT<1); (5.6)
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Consequently, Q, will produce the least error. This Q error occurs only in the
energy equation, since Q = Q(¢), and thus, in the momentum equation ¢,=0. To
examine this Q error in energy, let de= ((¢,+ Pv,) dt= —{ Quv, dr. Then,

Agy = —f 0.0, di= —6(Col)*log(1)>0  (ast<1), (57)
Aeg = —f Opv, di = 18(Col)*c 2, (5.8)
Ay (v) = ,j 0, (v) v, di = —8%(Col)? log,(t) > 0. (5.9)

Now, as in (5.5) and (5.6), we find
Agy (v)= 6% de;. and Aey < deg. {5.10)

and indeed Q, produces the least uniform collapse ¢ error.’

Now, as t— 0, the above errors Ad¢— oo; and consequently, this shockless ¢
heating error can, under some circumstances, be serious indeed. From (5.10), we see
that dep > de; , and this helps explain why the wall heating error for O was larger
than for @, with the same C, and C, in Fig. 3. (This comparison is appropriate,
since the first zone of problem 1 has precisely the same initial condition as for the
problem of uniform collapse.) A more serious matter is the error de, (v), which, for
spherical geometries (8 = 3), is nearly an order of magnitude greater than the error
Agy . In 1956, because of arguments similar to these, Noh [5, p. 58] suggested that
0O of (2.2) be taken as the standard Q formulation for all geomerties & =1, 2, or 3.
We make the suggestion again (and for more reinforcement see Figs. 18 and i6),
since 0, (v} still seems to be in common use.

6. Q ERRORS FOR A NONUNIFORM MESH

The second type of Q error occurs when shocks are propagated over a mesh with
unequal intervals. For our test problem 2, we again consider test problem I, but
now we introduce a nonuniform mesh with

Axk+1=RAxk, (6.1)

where R is a constant: R>1. We investigate the cases R=105 R=1.15, and
R =1.25. To show the errors for both decreasing and increasing mesh intervals, we
let the mesh decrease for the first half of our test problem (ic., let R— R “1in
(6.1)), and then we let the mesh increase (i.e., use (6.1)) for the second halif (Fig. 7).
In Fig. 8, R=1.05, and the density is plotted for our standard Q; =2p(4u)’. The
total error is shaded, and again we see the familiar wall heating error in the first
several zones. The new error: Ap; = p;t —pl..=p " —41is too large (ie., 4p; =2 0)

5 Several @, formulations have been proposed [6, 8] for which the shockless Q energy error vanishes
(ie., 4¢ =0), but, unfortunately, they do not otherwise represent a general fix to the remaming O evrors
in shock tracking that we consider here.
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L
ut=0
p $=1/3
Axgg = Axyy =1
Bx,q =R7T Axk AX4q = RAX, |p7=1
0<k<20 21<k<40 u”=-1
0 Xy XpX3 X20 Xk Xic+q *40

Mesh ratio R > 1

FiG. 7. The unequal-zoned, infinite-shock test problem. The initial and boundary conditions are the
same as in test problem 1, but here the initial zoning varies geometrically with Ax, ,, = R4x, (for con-
stant R>1). The mesh interval Ax, decreases (A4x,,,=R"!4x,) for the first half of the mesh
(0 < k<20), then Ax, increases (4x, ., = Rdx,) for the second half. The problems are normalized (for
any ratio R) by taking Ax,y= 4x,, = 1.0. The exact solution, of course, is the same as in problem 1 and
18 shown for y=3. That is, p* =4, and the shock speed S=1.

5 T T T

4 ]

2,

g\ Type #1 error

Density o

2| _

4 1 1
0 10 20 30 40
ax§, = 2.65 Mesh index k

Mesh ratio R = 1.05

Fic. 8. Here R=1.05, and this is the standard calculation using the benchmark Q, (2, 0)=2p(du)>
This type 2 error, dp™ =p* —4, is positive for the first half of the mesh (0 < k& < 20), where the mesh
interval decreases (i.e., R~!< 1) and is negative (i.e., 4p* <0) for the second half (21 <k <40), where
the mesh interval increases (R>1). The type 1 wall heating error is still present in the first few zones
next the rigid wall on the left; we note that here, dx,;,=2.65 (compared with 4x,,=10 in test
problem 1), and hence, this wall heating error is more serious than it may appear.
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Type #2 error

Type #1 error

Density p
w

N R B R
0 5 10 15 20 28 30 35 40

ax8, = 16.37 Mesh index k
Mesh ratio R = 1.15

Fig. 9. Standard calculation uwsing Q;(2,0)=2p(4u)?, with R=125. Here we note that
Axyp =16.37; thus both the type 1 and type 2 errors are very large.

for the first half of the problem, where the mesh decreases, and too small (dp; < 0)
for the second half, where the mesh interval increases.

In Fig. 9, R=1.15, and in Fig. 10, R=1.25. The wall heating (type 1) error is
almost the same in each problem (in the sense that it is still just over the first
several zones), but here the first few zones are larger, with larger values of R, and
thus the error becomes more serious as R increases. The new (type 2) nonuniform
mesh error also grows with R and becomes very serious {(~100%) for R=1.15.

7.4)
}3.8
Q
Zz
36
J
i \
1 S I T RS S 1.00
0 5 10 15 20 25 30 35 40
axy, =867 Mesh index k

Mesh ratio R = 1.256

Fic. 10. Standard Q,(2,0)=2p(4u)®. R=125, and the type2 error is nearly 100%. Here
Ax,,=86.7, and the type 1 error is also enormous.

581/72/1-7



Density o

FiG. 11.
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Mesh index k
Axy g = R'1Axk AXgg = BXyq =1 AXpyq = RAX,
0<k<20) (21 < k < 40)

Here R=1.05, and the Eulerian (fixed-length) Q¢ is used, which spreads shocks over a fixed

physical distance: Qg(6, %) = 6p(du/dx)? —tpC(Au/dx), and the type 2 error vanishes (ie, dpg =
pg —4=0). However, the wall heating (type 1) error is now very large using Qg, due to the large con-
stants Cy/ (and C,/) that are required to spread the shock over approximately three of the largest mesh
intervals. (That is, for R=1.05, /= Axy,, = 4x,,, = 2.65; and we take Cy=~0.9 and C; ~0.3. As a com-

parison, see Fig 3, where for Qr, with 4x=1, we used Cp=1 and C, =0.33.)

w

Density 0

Mesh ratio R = 1,05

l T T
[Qg (6,0.8) & HEA \
- /\ .
Qg (6,0.8)
- / —
Exact sofution
(. L [
[¢] 10 20 30 40
Mesh index k
Axy,q = RAX, Axyyy =RV Axy
(0 < k< 20) (21 <k < 40)

F1G. 12. Here we compare the Eulerian (fixed-length) Q with the (Qy & Hg) method and the exact
solution. Here, Qg(6, §) = 6p(du/4x)* — 2pC(duj/dx) (see Fig. 11), and we use Qr(6, 2) and Hg(0, 6),
where Hg(0, 0.6) = 6pCgde. Now, both the type 1 wall heating error and the nonuniform mesh type 2
error are eliminated. However, there is too much shock spreading using Qg for this to be a practical
solution to minimizing these errors.
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Fig. 13. Nonuniform mesh 4x, , , = R4x, of Fig. 7, comparing various Q formulations [1, 5. 61 and
their type 2 error, 4p* =p+ —4. Here, only the Eulerian formulation Q¢ gives 4pf =0 (ie., using a
fixed-length Qg, the type 2 error vanishes). We note that all Lagrange formulations Q, (i.c.. where
[=4x), produce dp #0 (ie., a type 2 nonuniform mesh Q error occurs). We see that this error grows
with the magnitude of C3 and also with (R— 1); thus, dp; ~ C3R—1).

This is unfortunate, as it is not uncommon to use R=2 in practice, and thus
R =1.25 might well be considered a modest zoning change.

The good news is shown in Fig. 11, where R =1.05 and the Eulerian, fixed length
QO of (2.4) and (3.9) eliminates the nonuniform mesh error completely. The bad
news is that very large Q constants are necessary (ie€., for Ax,,, =4x,,=2.65,
then (Col)? =(Cy dx,,,,)*> =6 (for C,~0.9) and C, 4x,,,, = 4/5 (for C,~0.37. This
is seen to spread the shock over a large number of the smaller zones, and, in this
regard, the use of Qg is not satisfactory. Also, the use of Oy generates a very large
type 1 (wall heating error) at the wall [see the discussion of (5.10)].

In Fig. 12, the (Qg & Hg) method is tested for R = 1.05, which results in both the
type 1 and the type 2 errors going to zero. Thus, in principal, we have a complete
remedy by using the fixed-length (E) formuliation for both ¢ and H. However, as
mentioned above, this is not generally a satisfactory solution because of the exessive
spreading of shocks by the use of Q.
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In Fig. 13, the results of several Lagrangian Q’s (i.e., where /=4x) all give
essentially the same error (where the larger errors correspond to the use of larger
constants C3 and C,), and we see that only Qp eliminates the nonuniform mesh
error completely. In particular, we note that the nonuniform mesh error goes
roughly as

dpf ~CYR—1). (6.2)

That is, this error increases with the O, constant C, (see also Figs. 15 and 16 in
Section 7) and with the fractional change in mesh width (R—1). Also, the term
(R — 1) accounts for the change in sign of the error for R>1 or R < 1. We also note
that White’s [6] Lagrangian ¢, (which was designed, in part, to eliminate the
uniform collapse error of Section 5) here fares no better (or worse) than the other
Lagrangian Q formulations. This leads us to conclude that the uniform collapse
error is independent of the type 2 (nonuniform mesh) error.

7. THEORETICAL DISCUSSION

In the standard difference formulations of Q;, the length / in (2.2) is taken to be
lk+1/2 = Axk+ 1/2, Wthh giVGS (lux)k+ 12~ (Au)k+ 1/2 in (37) NOW, When an unequal

1rnp11es that lisa functlon of x. That is, in the d1fferent1a1 formulation (2.2) of Qy,
[=I(x). We wish to determine /(x), where Ax,,,, is given by (6.1), or what is
equivalent,

Axp 1o =R Ax ). {7.1)
After a certain amount of algebra, we find that /(x) is given by
Ux)=2[(R—1)x+4dx,,]/(R+1). (7.2)

Let us verify that, indeed, /, . ,, = 4x,, ,,. Note that (7.1) implies

1—R*
xk:(m) Axl/Z’ (73)

and we substitute this into (7.2). Collecting terms and using (7.1), we have

1_Rk+1 1_Rk
:{2(1{—1)[ 2(1_+R) ]Axl/Z—I—Axl/z} S (R+1)

k
=R Axyp=4%; 1>



CALCULATIONS OF STRONG SHOCKS 99

as required. Thus, the differential formulation of @, is given by
Qr = Copllx)*(u,)* — Crpllx)u,), i u,<0, (74)

where /(x) is given by (7.2).

One consequence of using (7.4) instead of (2.2) in the differential equations (2.1)
is that steady traveling shocks are no longer solutions. To sec this, we note that the
shock width (which is proportional to /} will now be proportional to /(x) and
means that the shock shape changes with space and thus with time. This might still
be an acceptable Q representation of shocks, if only the proper shock-jump con-
ditions held, but our numerical experiments show, unfortunately, that this is not the
case.

Let us examine more closely the error introduced by /= I(x). We suppose that Q
is given by (7.4), and for simplicity, we take Q to be linear in u, (ie., C3=0 and
pC,=p°CP®=a constant). Then, Q is given by

Q= —C,p°Colx)u.,. (1.5)

We want to show that (7.5) (with R# 1 in (7.2)) introduces a fundamental errer in
the differential equations.

We examine the momentum equation, u,= —(1/p°)P.—(1/p°)Q., and from
(7.5) we write

U= —(1/p°) P+ C, Colu, + [(C, CHu ] L. (7.6)

From (7.2), we have /,=2(R—1)/(R+1), and thus (7.6) can be written (letting
C,=2C% = (R+1))as

_ 1
u,~C1(R—I)Csuxz—/—oTPX-FCngluxx. (7.7)

We interpret the left-hand side of (7.7) as arising from a fictitious frame-of-
reference velocity X given by

X=u+C(R-1)C,. (7.8)

We deduce this by the following argument. In general, time derivatives are given by
f=f+@—X)f.; where X=X(x, 1) =x+jf(dt is the Eulerian coordinate of a
general time-dependent frame of reference. For instance, if X =u, then f=f,, and
X(x, t)=x+ [u dt is just the Lagrange reference frame. If X =0, then f=f,+uf,,
and X(x, t)= x, which is the Bulerian frame of reference. Thus, from (7.7), u~ X =
—C(R—1)C;, and it follows that X is given by (7.8). This is just the behavior we
observed in our numerical experiments (see (6.2)). That is, from (7.1), R<1 gives a
decreasing interval, and (7.8) implies that X <, or the frame-of-reference velocity
is too slow, which (since the mass of a zone is constant) gives p* too large.
Likewise, for R> 1, then X>u, and p* is too low (see Figs. 8,9, and 10).

In addition to this error in the momentum equation, a more serious error enters
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the energy equation. To see this, let us revisit the uniform collapse problem of Sec-
tion 5 and again take Q to be given by (7.5). The exact solution in plane geometry
(6=1) for the uniform collapse problem, where the initial conditions are
u{x,0)= —x and P = P(p), is again found by assuming p = p(¢), and thus P = P(¢).
Doing this, we check by direct substitution into (7.7), that the solution is given by

wx, )= —x—C(R—1)C,1. (7.9)
Then, from X =x+ [ udt,
X=x(1—1)—(1/2) C{(R—1) C.22, (7.10)
and from (2.1), v=X,,= (1/p°) X, = (1/p°)(1 — ¢); or, since v =1/p,

p=p°/(1—1). (7.11)

Thus, as required, p = p(¢) and P = P(r). Indeed, (7.9) is the exact solution, with Q
given by (7.5). We can now compute the Q energy error, Ae, where

Ade :j (g, + Pv,) dt = —J Qv, dt =J Cp°C%U(x) u v, dt=C,C(x)t.

Now, {(x) is given by (7.2), and thus
dg= +2C, CH{[R—1)x + 4x,,1/(R+ 1)} (7.12)

Equation (7.9) shows that the momentum error goes as C (R — 1)z, while (7.12)
shows that the energy error is more serious, as it depends on x as well as ¢, and goes
as C{(R— 1)xt.

There is still the question of how closely the difference solution agrees with our
analytical results. For the uniform collapse problem, at least, the agreement is exact.
We mean by this that the solution to the difference equations (3.1)-(3.6) over the
nonuniform mesh: x, = [(1 — R*)+ (1 —R)] Ax,,, with Qy given by (7.5) and /(x)
given by (7.2) (which, for the difference equations, is the same as using O =
—Cp°C% 4u), is precisely given by (7.9) to (7.11). To show this, we let
Ut P =ulxg, (n+3) 4t], pptl,=plxs+xe,1)/2, (n+1)A4zr], etc. Then, from
(7.9) and (7.3),

uz+1/2= _xk-—Cl(R— 1) és(n+%) A4t

1—R¥ o
=T-g e CR-1) Cin+3) 41, (7.13)

and similar substitutions in (7.11) give p;t1,, etc. It is easy to verify that (7.13) etc.
exactly satisfies (3.1) to (3.6).

That the difference solution (7.13) is precisely the exact solution (7.9) is no doubt
a function of the simplicity of this uniform collapse test problem, but it does confirm



CALCULATIONS OF STRONG SHOCKS 101

our analysis that the source of error arises from letting /= 4x in the Lagrangian {J,
difference formulation. Also, it is easy to verify that if Qg of (3.9) is used in the
uniform collapse test problem, then (as in our experiments) the difference solution is
also the exact solution, without Q, and is thus independent of the mesh interval.
Consequently, our theory is in exact agreement with our numerical results—at least
for this simple uniform collapse problem.

For the general case of a nonuniform mesh (i.e., test problem 2), we argue by
numerical experiment that the source of difficulty indeed lies in allowing /= 4x in
the difference approximation of the Lagrangian @, formulation, which, in turn,
implies that /= /{x) in the differential equation formulation of ¢ . That is, we want
to show that the numerically observed nonuniform mesh error is simply due to the
error in the solution of the differential equations when Q; is given by (7.4). We do
this by using the Q; of (7.4) and /=[Kx) of (7.2) in Egs. (2.1) and solving test
problem 1 (which is just test problem 2 with equal mesh intervals). This leads to the
difference equations (3.1)—(3.6) with (Qy ). 1, of (7.4) given by

, Au)?
(QL)k+1/2 =CoPr+ i/2 [Z(X) Z_]
X kv 12

Au
‘“Clpk+1/2(cs)k+1/2 [l(x)z—x] > {7.14)

k+1/2

where now (for equal mesh intervals: Ax, , ,, = 4x,,) [I(x) du/4Ax] is given by

4
(95| =2MR= D0+ D R DY AL (019

We want to show, then, that both equal and unequal zoning lead to essentially
the same numerical solution. This numerical solution, in turn (we assume), con-
verges to the exact solution of the differential equations (2.1) with Q given by (7.4),
and /(x) given by (7.2). In particular, in Fig. 14, we use equal mesh intervals (ie.,
Axy 1p=4Ax,,) and take R=1.05in (7.15).

This choice of R corresponds to an increasing mesh interval; and, just as in the
second half of test problem 2 (with R=1.05, Fig. 8), the density is seen to be too
low. More than that, the density in Fig. 14 is too low by exactly the same amount
as in Fig. 8, which shows that this Q; error is independent of the mesh intervai
used, and we conclude that we essentially have convergence to the exact solution.®

This establishes that it is the Lagrange formulation Q,, where [ is taken to be
mesh interval Ax, that causes this Q error. Thus all O, formulations will
presumably be equally in error by a similar argument, while only the fixed-iength
Q¢ results are correct (Fig. 13).

S In Fig. 14, the results are smoother than in Fig. 8 due to the presence of a linear term in Q; . In par-
ticular, in Fig. 14, we used Q, (C3, C,)= Q. (1, }) versus 0, (2, 0) =2p(4u)* in Fig. 8. Of course, the wall
heating Q error in Fig. 14 remains, since it is a Q error of type 1 and occurs for all s, as discussed in
Section 4.2.
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FiG. 14. Here we prove numerically that the nonuniform mesh error is due to the Lagran-
gian formulation of @ in which the standard usage is to take the length / equal to 4x (ie.,
Ly y12= 4%y 1) This implies (for an unequal mesh) that /=/(x). In Section7, we argue that
an unequal mesh, given by Adx;,;»=R 4x,_i5, is equivalent to using (in the differential
equations) Q) = CZp[l(x)1%(u,)?>— C,pl(x)u, (ie, (74)), where I(x), is given by (7.2): lx)=
2[(R—1)x+ 4x,,]~(R+1). For this choice of Q; and I(x), we seek the exact solution of
the differential equations and want to show that this solution contains what we have called the
type 2 nonuniform mesh error. To do this, we difference the above @, and /(x), assuming a
constant Ax;,p=4x,, for test problem 1. This is the same, then, as using (Qr)ktip=
Cépk+1/21,%+1/2(Au/Ax)k+1/2~ C1Pe e y2(Csdi s 1l 4 172(Auf %), 1o, Where (for equal 4x) we bave
Levip=2[(R—1)(k+1/2)+ 1]+ (R+1). For R=103, this is seen to be identical to the calculation in
Fig. 8—where we compare just the second half of the mesh (21 <k <40) (i.e., where the mesh interval
Ax increases). In this comparison, we see that the solutions are essentially the same (when we exclude
here of a linear term in Q. Here, Q(C2, C;)=0.(1, 3) = pl*(x)(du/dx)* — Lpl(x) C(Au/dx)vs the
otherwise equivalent (but noisier) @, =2p(4u)? in Fig. 8.) The point here is that if the unequal mesh
(dxy 412=RAx, ;) is used with the O, above (ie., (7.4)) and /(x) of (7.2), then @, reduces to the
standard Q, = C%p(du)? — CopC(4u). Thus both the above caiculation and the second half of the
calculations in Fig. 8 are simply different approximations to the identical difference equations, but with
equal mesh intervals (above) and unequal intervals in Fig. 8. Since these solutions agree, it is clear that
the numerical solution is not sensitive to equal or unequal zoning, and we conclude that we essentially
have convergence, and indeed the unequal mesh error is already an error in the exact solution of the dif-
ferential equations. This completes the numerical proof.

A more practical solution to the nonuniform mesh error is to use the (Q; & H;)
method. Using an artificial heat flux H; not only eliminates the wall heating error,
but also allows for smoother shocks, and thus smaller Q constants C3 and C,. This
is shown by comparing Figs. 15 and 16. Figure 15 compares R=1.05 and
01 = 2p(4u)? with the (Q, & Hy ) method—in both cases, Q; = 2p(4u)> In Fig. 16,
we make the same comparison, but with @ = p(4u)® (ie., C2=1), and we see that
the (Qp & H, ) method produces a corresponding reduction in the nonuniform zon-
ing error to around 3%. In both Figs. 15 and 16, we see that the (Q, & Hy)
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FiG. 15. R=105, and we compare the @, and (Q, & H,) methods: 0,(2,0)= 20{4uy’; and
QL(2,0)=2p(du)* and H (2.5, 3)=2.5p|du} de+ 2pC de. As expected, the wall heating (type 1) error is
climinated when the heat flux term H, is inciuded.
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1 | | 1 1.
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FiG. 16. R=1.05, and we again compare Q, (but here using a reduced coefficient C} =1} with the
(Q & H\) method: @ (1, 0)= p(4u)?. The solution is noisy, but both types 1 and 2 errors are reduced
by using this smaller value of CZ. 0, (1. 0)=p(4du)* & H, (0, 3pCsas. We see that using both @ and H,
climinates the wall heating type 1 error altogether and (with small Q coefficients) reduces the type 2 non-
uniform mesh error to ~3%. The (Q; & H) method is much smoother than Q,; alone and may be a
practical compromise for mesh-interval changes that are not too large.
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method has eliminated the wall heating type 1 error. For modest values of R, then,
the (Qr & H;) method may give sufficient accuracy; otherwise, the (Qg & Hg)
method is needed, and both the wall heating error and the nonuniform mesh error
will be eliminated.

8. O ERRORS IN SPHERICAL (0 = 3) GEOMETRY

The third type of Q error is related to strong shock propagation in spherical (or
cylindrical) geometries. This error is considerably more serious (up to 1000% error
in excess shock heating near the origin) and is also more complicated than the
previous Q errors. This type 3 error depends on the Q formulation (i.e., @, of (2.2)
vs Qr(v) of (2.6)), and also seems to depend on whether Q is treated as a scalar or
a tensor viscosity in the formulation of the hydrodynamic equations. In particular,
a tensor formulation due to Schulz [8] and one due to Whalen [9] produce less Q
heating behind shocks and give sharper shocks than our standard Q; formulation.
Those sharper shocks and less central heating are instrumental in reducing this
third type of Q error, and both of these tensor formulations are considered more
appropriate in spherical geometry than the usual equations (2.1).

Test problem 3 is just the spherical (6 = 3) generalization of test problem 1. Here
the post-shock solution is, again, a set of constant-value step functions (u*, p*,e",
and P*) (see Fig. 17d of Noh’s generic, constant-velocity shocks). The initial con-
ditions for the unit sphere (0<r<1) are u(r,0)=u’= —1, p(r,0)=p’=1,
g(r,0)=¢=0, and P°=(y—1)p%°=0, and the boundary conditions are
R(0,t)=0 and u(l, )= —1. The exact solution (for y=3) is given in Fig. 17d,
where u* =0, p* =64, et =4 and P*=(3)p*te* =% The shock speed is
R,(t)=S=1 The preshock values are u~ =u’= —1, ¢~ =¢"=0, P~ =P°=0, and
the density in front of the shock is given by p = p°(1+ ¢/R)* The shock position,
R, =1/3, gives the preshock density p~ = (1 + #/R,)* = (1 + 3)* = 16, which we see is
independent of ¢, and thus leads to the constant postshock values given above.

Our standard test problem has 100 mesh intervals (4r =0.01 and K= 100), and
the results are compared at time 7 = 0.6. Since the shock speed is S=1, 80% of the
mesh, or 80 mesh points, have been traversed by the shock, and one would expect
accurate results.

Unfortunately, this is not the case. In Fig. 18, the standard Q,(2)=2p(4u)* is
compared with the original Qy(v)=2(4r)*p(r/R)*(dv/At)* = 2p(Au+ 2u AR/R)*
(see (3.12)), and both are compared with the exact solution p * = 64. The numerical
results are strikingly poor and, in fact, hardly bear any resemblance to the exact
solution. The error for the standard Q is seen to be on the order of 600% near the
origin and 20% behind the shock, while the error for the original von Neumann-
Richtmyer Lagrangian Q is roughly 1000% in the central region and nearly 40 %
behind the shock.

Clearly, this third type of Q error depends on the Q formulation. There are
several reasons for this. One is related to the shockless Q heating error of Section 5,
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Noh's (generic} constant velocity shocks
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FiG. 17. The exact solution at ¢=0.6 to Noh’s generic. constant-velocity shock problems [2]: {a)
initial conditions; (b) plane geometry (6=1) with a shock generated at a rigid wall; (c) a shock
generated at the axis of symmetry of a cylinder (6 =2); and (d) a shock generated at the center of a
sphere (0 = 3). All solutions have constant post-shock states and the same constant shock speed (§=1).
The essential difference is the pre-shock density: p~ =1ford=1,p " =4ford=2,and p~ =16for § =3;
and p = p°(1 +¢/R)°~! in front of the shock.
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Fic. 18. This is the benchmark test problem, where 4r =0.01 (i.e., K= 100) and time = 0.6. Here we
compare the standard O, = 2p(4u)? with the original von Neumann-Richtmyer Q, (v) formulation, (2.6):
QL(v)=2(dr)? p(r/RY(Av/A1)2 =2-10"* p(r/R)* (4v/A1)? =2p[ Au+ 2udR/R]? (see (3.12)). Here Q| is
superior to Q| (v), but both Q’s produce serious errors. The correct solution is p ™ = 64.

since the first zone of test problem 3 is just a special case of our uniform collapse
test problem, and we found in (5.9) that the Q; energy errors went as
Ae; (v) = 6% 4ey,. Thus, for 6 =3, the error using Q,(v) is nine times as large as
using Q.

An even more disquieting error arises from using the Q,(v) formulation of Q,
which preheats the gas ahead of the shock. This occurs because, in the preshock
region, v=1/p=(1+1t/R)~% and thus, v,= —(2/R)(1+1/R)~*<0, from which it
follows that Q;(v)#0. This preheating is, of course, not physical, but is another
instance of a shockless Q heating error. Note, however, that our standard QO
vanishes ahead of this shock. This error and the large shockless Q heating error near
the origin combine to produce errors for @ (v) considerably worse than those for
Q., as shown in Fig. 18. Indeed, it is surprising that the solution is as good as it is.

Just how slowly the Q,(v) solution converges is shown in Fig. 19, where the
results are plotted for various mesh intervals (K=150 (4r=0.02) up to K=800
(4r=0.00125)). Even at K=800, the numerical solution still has a disquieting
error. These results show that @, (v) of (2.6) is a poor formulation and is essentially
the reason that our definition of Q; given by (2.2) is taken to be the standard Q (for
d=1,2, and 3). We stress this point, since Q; (v) still seems to be in common use.

Now, of course, there are still serious errors in the use of the standard
QL =2p(4u)®. This difficulty is analyzed in Fig. 20. The problem is seen to be
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(a) This example shows the truly large errors in density that result from using the original
O, (w)=2(4ry* (r/R)* (dvjA1)? =2p[Au+ 2uAR/R]? (see (3.12)) for various mesh intervals (4r). The
comparisons are ¢=0.6 and 4r=0.02, 0.01, 0.005, and 0.00125, that is, for K =50, 100, 200, and 800.
This shows that the convergence of the density to the correct value p* =64 is very slow indeed, and the
error is unacceptable even for K=800. (b) Likewise, the large errors in pressure for K=50, 100, 200,
and 800. The correct value is P =% (c) Errors in internal energy for K= 50, 100, 200, and 800. The
exact solution is ¢ ™ =1. (d) This shows the very serious errors, using Q; (v}, in the shock speed for the
coarser grids of K= 50, K= 100, and even K= 200. Here, S=1is the correct solution. (Figures 192, b, ¢,

and d are courtesy of M. P. Sohn of Los Alamos National Laboratory, who used one of Los Alamos’
standard Lagrangian codes.)

associated with the shock smearing due to @, which “senses” an incorrect (i.e.. too
small) jump-off value of the preshock density {p ~). That is, the Q shock smearing
selects a p~ < 16. This error is a maximum at early times and becomes less serious
in time as (the similarity) solution spreads out the preshock region over more and
more mesh points, and thus the fixed shock thickness (i.e., it is always spread over
~3 mesh points) becomes a smaller fraction of the preshock region. The key to
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FiG. 20. The solution for Noh’s spherical test problem (Fig 17d) is given at two different times
(¢=6 and ¢ = 30) for the scale variable £ = #/R. As ¢ increases, the preshock density profile is spread over
a physically greater and greater distance. Hence, the preshock value p~ =16 should be progressively
easier to resolve numerically as time advances. The wiggly line is the numerical solution using the stan-
dard @, = 2p(4u)?. The numerical error is so large (10% < &< 600 %) that it hardly resembles the exact
solution, p* = 64.

more accuracy, then, is to sharpen shocks as much as possible. We confirm this
argument in Fig. 21, where we prove numerically that this Q error is an error of the
O shock-smearing method, and is thus already an error in the exact solution of the
differential equations with Q. The argument is the same as in Section 4, where we
seek the limit solution as 4r — 0 while holding / constant in Q = (Col)*p(Au/4r)>.
We sce that the difference solution has indeed converged. Thus, this third type of
error is related to the Q formulation, but not to the particular difference equations.

One way to sharpen shocks, as we found before, is to use Noh’s (Q & H) shock-
following method ((2.1, (2.2), and (2.3)). This works because using a heat flux H is
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Fig. 21. Here we establish numerically (see Sections 4 and 8) that the difference solution (for
Ar=0.01) has essentially converged to the exact solution of the differential equations with Q=
(Col)? p(u,)*. We take C2=2 and /=001, and thus Q=2-10"* p(x,)% The solid curve is for 4r =001
and Q; =2-10"*% p(du/dr)*=2p(4u)®. Also, for /=001, we let 4r— 4r/2=0005, giving O, =
2-107* p(du/Ar/2)? = 8p(Au)?, which is plotted as dots (-), and we plot R}(Ar/2, 41/2)=41Ri(dr, 4t)
(see discussion in Section 4.2). Thus, the spherical shock error is not related to the difference methed, but
is an error in the solution of the differential equations due to Q shock smearing.

conjunction with Q makes it possible to use smaller Q constants C3 (and C,) (while
still keeping the noise level down behind the shock). This is shown in Fig. 22a,
where the standard Q; (2) = 2p(4u)? is compared with the (Q, & Hy ) method using
Q1(% 1) and H(4, 1). Using Q,(3, %) gives sharper shocks and an improved value of
p*, and using the heat flux H smooths our the noise behind the shock. Of much
more importance, however, is that the central heating error is nearly eliminated.
This is seen in Fig. 22b, where ¢* ~ { over the entire postshock region. Indeed, the
results of Fig. 22, using (Q. & H;) would be nearly exact if one assumed that
p” =145 (ie, p " =((y+1)/(y—1))p =4x145=58, and u* =0, ¢+ =1, etc.),
and thus the only real error in the calculated postshock values is due to the shock
smearing that picks the wrong preshock density (i.e., p~ ~ 14.5, as argued above).
Just how the improvement goes with smaller Q constants CZ and C, is shown in
Fig. 23, where it is clear that the sharpest shock gives the most accurate solution.

In Fig. 24, the non-Q PPM of Colella and Woodward [7] produces very sharp
shocks (on the order of one to two mesh widths). Here, they achieve high accuracy
on the standard K=100 test problem and nearly exact results using an accurate
adaptive-mesh shock-following procedure, with K =400. The K = 400 results are alse
shown to be nearly as accurate (converged) as the standard PPM solution with
K=1200. The effect of using an adaptive mesh is to minimize the actual (ie.
physical) shock thickness (which is all-important in determining the correct
preshock value, p~ =16, and it is thus clear that such a procedure would benefit
any finite-difference method.
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FiG. 22. (a) Standard Q,(2,0)=2p(du)? vs (Q, & H;), where (using smaller @; constants C and
C, to give a sharper shock) Q, (3%, 4)=2p(du)?>~1pCy(du) and H\,(4,1)=4p|du]de+ pCgsde. The
(@, & Hy ) method is much smoother and more accurate than Q; alone, but the error, 4p* =p* — 64,
is still on the order of 10 to 20%. (b) Q. =2p(d4u)* and the more accurate (Q, & H, ) method. The
exact solution is ¢ ¥ =}, and we see that the energy error is essentially zero using the (@, & H, ) method.
These results (Fig. 21) show that the error is due to the incorrect preshock density p~ and would be
essentially exact if p~ ~14.5. Then, in addition to the correct value ¢* =1, we would have
pt =4p~ =4x14.5 =158, which 1s the observed value, and thus the Hugoniot jump conditions would be
satisfied. The difficulty is seen to be that of shock smearing. That is, the correct value p~ = 16 cannot be
accurately resolved using (4r = 0.01).
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F1G. 23. Sharper shocks reduce the p* error. Errors go as Q, (1, 4)> 0,(2.0)> 0, (3, 1), where, n
each case, there is less and less shock smearing. The (@ & Hy) method also allows for small O coef-
ficients, C and C,, and less central heating error to produce the sharpest shock profile.

9. SCALAR VERSUS SCHULZ’S TENSOR 0 FORMULATIONS

In 1964, Schulz [8] proposed that Q be treated as a tensor viscosity and gave the
following (T) formulation of the hydrodynamic equations (for § =1, 2, and 3). We
include the von Neumann-Richtmyer scalar (S) formulation, (2.1), again for com-
parison, and we note that use of the artificial heat flux, H, remains the same in both
formulations:

581/72/1-8
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FIG. 24. The (non-Q) PPM of Colella and Woodward [7] has very narrow shocks (~1 or 2 mesh
intervals) and for K =100, is superior to all of the results of Fig. 23. PPM using K =400 and mesh
refinement (a shock-capturing adaptive mesh) is equivalent to the standard PPM using K = 1200 and is
thus a very important procedure for tracking shocks accurately. (Figures courtesy of P. Woodward.)

pu,+Pr= —0p

. Scalar (8)  (9.1)

1
ple,+Pv,)=—Q I:"R”L(‘s"l)’ﬁJ*Ra_J[R‘HH]R

puct Pe= —Qu—| (6= 2|
. Tensor (T) (9.2)
p(e,+ Pv,)= —Qup + 5T [R°~'H],.
Schulz also defined a new Q, which we denote by
0.(S) = C2pl* \u,,|** |u,|'7?, if u, <0, and O otherwise. (9.3)

Here /= Ar in the difference formulation as usual.
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F1G. 25. The lower curve uses Q,(2, 0) = 2p(4u)? in Schulz’s tensor (T) formulation (Section 9). The
upper curve also uses Schulz’s (T) formulation and, in addition, his Q,(S)=2p|4%u}*" |du|' % Both Q
formulations are seen to give essentially the same results. We conclude that it is the tensor use of Q that
is important rather than the @, formulation. Thus, we stay with the standard O, = 2p(4u)* usage.

Now, Schulz’s Q;(S) eliminates the shockless O heating error (for the uniform
collapse problem of Section 5—since u,, =0), and we thus might expect superior
results for our spherical test probiem 3. Indeed, the results (Fig. 25) using O (S or
Q. with the tensor (T) formulation (9.2) are significantly better than using the
scalar (S) equations (9.1), but there is essentially no improvement using Q; (S} over
using Q,. We conclude, then, that the major improvement occurs because of the
way Q enters the equations, rather than the form of @, and we stay with our stan-
dard Q, = C3p(4u)’. The reasons for the improved results are not entirely clear, but
in part, the improvement follows from the formulation of (9.2), where there is less
Q0 dV shock heating than for the scalar equations (9.1). That is, in (9.2),
0 dv — Qu,, independently of geometry (=1, 2, or 3), and thus the nonshock ¢
heating term, Q(6 — 1)u/R, is eliminated from the energy equation.

In Fig. 26, we compare our standard Q,(2)=2p(4u)* (T) with the (Qy & H,)
(T) method (using Q.(2) and H(6)). The error in density is about the same just
behind the shock, but the central heating error is nearly eliminated, as seen in
Fig. 26b. To improve this result, it is necessary to narrow the shock width, and this
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is done by reducing the Q; constant C3. In Fig. 27, we compare Q; (3) (T) (which
indeed has a narrower shock, but is extremely noisy) with (Q (1) and H;(10)) (T)
(which is still fairly noisy, but gives superior results).” These (Q, & Hy) (T) results
of Fig. 27 are reasonably smooth behind the shock and are essentially exact. Thus,
we find the best all-around results for the 100-zone test problem are given by the
(QL & H; ) shock-following method using Schulz’s tensor formulations (9.2).

The results are summarized in Fig. 28, where we compare the various Q;’s,
(Q. & H_), and the PPM.

10. WHALEN’s TENSOR  FORMULATION

Whalen, in Ref. 9 and in a private communication, presents some remarkably

_ accurate results for our spherical test problem (see Figs. 29 and 3Q), which were
obtained using his covariant tensor Q formulation of the hydrodynamic equations.
We conclude by giving his formulations for § =1, 2, or 3, and in particular, concen-
trate on the case of spherical geometry (5 =3),

pu(P+ Q%)= —(6—1)(Q"—Q*)/R
and (10.1)
pe,+(P+QF)v,=(0~1) u(Q"— Q°)/R,
where Whalen defines
0% = (3/2)(Col)*pup— 5V -i1)
and (10.2)
= (3/2)(Col)’pu(u/R— 3V - ),
and thus
0" — Q% =3(Col) pui(ur — u/R). (10.3)
Now, let § =3, then V- it= (urp + 2u/R), and

0% = (Col)pu [uR ——1‘%]. (104)

Comparing (10.3) and (10.4), we see that
0% —0%=30", (10.5)

7 Subsequent tests show that the choice C2=1 and hZ=10 to be less noisy and essentially just as
accurate as C3=4 and thus [Q(3) & H(10)] is to be preferred.



CALCULATIONS OF STRONG SHOCKS 115

80 l I T 3
@®
1 (RzoR)R
50 |- u - —Py - — M
[0, @2 &H, 6] (T) e PR
2
or Q (2)=2p(au2  {T) € it . N
? L = Zplau t pRZ o
g H =0 "
=] {R<H)
30 N R _
pR?
20 ]
0 _
o | L ! | L !
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Radius (R)
25 T T T — T qi
®
2.0 - ]
Q, (2) = 2p(au)? (T)
/—— H =0
151 -
g
g
w
1.0 [Q, (2) &H, (6)] (T) -
05 S _
0 L { 1 | I i 1
0 0.05 0.10 0.15 0.20 0.25 0.30 0.36 .40
Radius (R)

F1G. 26. (a) Schulz’s tensor @ formulation with and without the use of an artificial heat flux # (see
Section 9). The lower curve is the tensor (T) Q formulation using Q; = Q(2) = 2p(4u)? and H=0. The
upper curve is (Q, & Hy) (T) using Q; =2p(du)? and H, =6p|du| Ae. This shows an obvious
improvement using H, with @y, but finer tuning is possible, as seen in Figs.27a and b. (b) The
overheating at the orngin is greatly improved using (Q, & H,) (T), and in fact, 1s almost the exact
solution, e+ =1.
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FiG. 27. Q.(3)=1p(4u)? in the (T) formulation is very noisy, but produces a narrow shock. (For
more complicated problems, the choice C3=} may be too small, as too much noise may be generated in
the solution and thus reduce the computational 4z too severely. A more practical (but somewhat less
accurate), all-around choice is [0y (3, 1) & H.(6,0)] (T). That 1s, a more conservative use 1s

L=2p(du)* —L1pCsdu and Hy =6p|du| e, but C3=1% or Cj=1% and h}=10 are preferred where
possible.) The sharp shock remains in the [Q, (3) & H.(10)] (T) method, where H, (10)=10p|du]| de,
and most of the post-shock noise is damped. The density and energy errors are nearly zero; thus, the
(QL & Hy) method is a preferred shock-following procedure when used with Schulz’s tensor (T) for-
mulation (9.2).
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FiG. 28. A comparison of scalar (S) and tensor (T) results. The (non-Q} PPM lies above the best
scalar (@, & H,) (S) results, but is under the @, (T) and (@ & Hy) (T) results. The PPM {7] with
mesh refinement and the (@ & H\) (T) method give essentially the converged (exact) solution.
and we can write (10.1) (for 6 =3) as

pu,+(P+ Q%)= ~3(Q")/R
and (10.6)

pe,+(P+ QR)Ul = 3“(QR)/R
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FiG. 29. Whalen’s covariant formulation [9] (10.6) and (10.7), vs the scalar O, results and Schulz’s
tensor (T) formulation (Section 9). Here, Whalen defines Q; = (Div u)? = C}p[du+2uAR/R]*= 0\ (v)
(ie, our (3.11)), Qp=(Delu)®*=Cip(du)*=Q_ (ie, our (3.7)), and his tensor QF, Q, =
C2p(du)(Au—uAR/R). Whalen’s formulation is remarkably accurate for a 40-zone (K =40) problem.
(Figure courtesy of P. Whalen.)

In the difference formulation,® Whalen sets /= AR, and thus

u AR

OR=Czp Au I:Au— :IifAuSO, and is otherwise 0. (10.7)

In Fig. 29, Whalen compares his covariant formulation (10.6) with Schultz’s for-
mulation (9.2) and the scalar equations (2.1) using various Q’s. His notation means

2uAdR

Q=Divu)’=0Q.(v)=C2p [Au+ ] (ie., our (3.11)];
Q= (Del u)*= 0, = C2p(du)? or our (3.7);

and from (10.7),

Oftensor) = Cip(au) | au—"2E |,

Whalen’s covariant results are clearly superior to the other Q formulations, and
when we consider that only 40 zones (K=40) are used in Fig. 29, then his for-
mulation proves to be remarkably accurate. In Fig. 30, the effect of refined zoning is

8 A word of caution: we were not able to reproduce Whalen’s results with the most straightforward
differencing of (10.6) and (10.7). In particular, (10.7) vanishes for the most central zone where du=u
and AR=R (ie., u AR/R=(u/2) R/(R/2)=u, and thus du—u AR/R=0]. In a like manner, QF also
vanishes for our uniform collapse problem of Section 5, and this may contribute to his accurate results
here. In any case, some subtlety is involved, and we await further clarification from Whalen on this sub-

ject.
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Fi6. 30. Whalen’s covariant tensor Q formulation, (10.6) and (10.7), where s tensor QF is given by
QFf = C¥pldu} [4u—udR/R]. The post-shock density is essentially correct { p.,,., = 64), even for K =25,
and the convergence is considerably more accurate than for the scalar equations. (See Fig. 19 for a com-
parison of the effects of zoning on convergence.) (Figure courtesy of P. Whalen.)

shown for Whalen’s covariant equations (10.6) and (10.7), and the results show a
rapid convergence. Indeed, his results are remarkably accurate even for K=25.
Now, the type 1 (central, or wall heating) Q error is still present with this for-
mulation (as it is for all Q formulations—see Section 4) and suggests that near-
perfect results would be obtained bu including Nob’s heat flux H in a (Qf & H,)
shock-following method.

11. CoNCLUSION

We conclude that the Q errors of types 1, 2, and 3 are not due to errors in any
particular difference-method solution, but rather, the Q errors are intrinsic to the
artificial-viscosity-Q shock following method itself. That is, these Q errors are con-
tained in the exact solution to the differential equation with Q. Therefore,
improvements must be sought in modifying the Q method itself (e.g., by using a
tensor formulation or using both Q and H to follow shocks or to minimize the
physical shock thickness, as in the non-Q PPM). More generally, since the Q errors
are shown to be related to the (artificial) shock thickness of the shock-smearing
procedure, then all methods will benefit from using an adaptive-mesh shock-
capturing procedure. In all cases, narrow shocks produce the least error; thus the
(QL & H;) shock-following method, which allows the use of smaller @ con-
stants-—and thus sharper shocks—is to be preferred over Q alone; and most impor-
tant, the inclusion of an artificial heat flox H minimizes the excess O heating
generated on shock reflection. In particular, it is shown that the (Q, & H; ) method
using Schulz’s tensor (T) formulation (10.2) with minimal Q constants C3 and C, is
most satisfactory.
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